博碩士論文 91521021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.147.55.200
姓名 王妍尹(Yen-Yin Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 串列式傳輸接收器之設計與實現
(Serial Link Receiver Design and Implementation)
相關論文
★ 低雜訊輸出緩衝器設計及USB2實體層的傳收器製作★ 低雜訊輸出緩衝器設計及USB2實體層的時脈回復器製作
★ 應用於通訊系統的內嵌式數位訊號處理器架構★ 應用於數位儲存示波器之100MHz CMOS 寬頻放大器電路設計
★ 具有QAM/VSB模式的載波及時序回復之數位積體電路設計★ 應用於通訊系統中數位信號處理器之模組設計
★ 應用於藍芽系統之CMOS射頻前端電路設計★ 具有QAM/VSB 模式之多重組態可適應性等化器的設計與實現
★ 適用於高速通訊系統之可規劃多模式里德所羅門編解碼模組★ 應用於橢圓曲線密碼系統之低複雜性有限場乘法器設計
★ 適用於通訊系統之內嵌式數位訊號處理器★ 雷射二極體驅動電路
★ 適用於通訊系統的內嵌式數位信號模組設計★ 適用在通訊應用之可參數化內嵌式數位信號處理器核心
★ 一個高速╱低複雜度旋轉方法的統一設計架構:角度量化的觀點★ 5Gbps預先增強器之串列連結傳收機
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,由於多媒體之應用,資料傳輸量愈來愈大,高速序列已達到每
秒兆位元的速度,因其低廉之價格故廣為應用。
在本論文中,首先我們比較分析兩種在接收端常用之高速資料回復系統:
超取樣方式以及鎖相迴路方式來完成資料回復。在接收端的實現方面可分為前
端的取樣電路以及資料回復電路,除了實現其電路架構外更近一步對其做理論
分析。前端的取樣電路對操作在8Gbp 的差動信號對做接收放大然後信號再經
過資料回復電路做處理。而由於我們用超取樣之方式實現全數位之資料回復電
路架構,因此一些重要的效能及設計參數都被分析及公式化使不同的設計參數
可以符合不同的系統規格。此外對整個資料回復電路做一套影響系統效能的雜
訊以及錯誤率分析以及將影響系統效能的因素參數化。最後結合所有的設計參
數以及電路架構我們建構出一個模組產生器。藉著模組產生器,使得整個資料
回復電路透過參數化的過程使設計具有彈性並自動產生出可合成之Verilog
程式。
摘要(英) Due to the increasing applications of multimedia in recent years, the
requirement of data bandwidth has been increased. High speed serial link that
achieves Gbps has the advantage of low cost and thus become popular.
First, we compare and analyze two types of data recovery systems usually used
in high speed serial link receiver. One is the PLL-based clock extraction and the
other is the oversampling phase-picking. In this thesis, an input sampler and the
oversampling based data recovery circuits and its theoretical analysis are proposed
for Gbps receiver. Second, an input sampler that receives differential signal of
8Gbps and amplify the differential signal to become digital signal is proposed.
Third, we adopt an oversampling phase-picking method to realize an all digital data
recovery circuit. Several key performance and design parameters are analyzed and
formulated, therefore, different specifications can be met with different design
parameters. Besides, we derive a set of jitter and BER analysis equation of the
oversampling method. Moreover, we parameterize the factors that influence the
performance of the system. Finally, by combining all the design parameters and the
architecture, we make a module generator of the oversampling data recovery circuit.
By utilizing the proposed module generator we make the design of data recovery
circuit more flexible and can generate the synthesizable Verilog code automatically.
關鍵字(中) ★ 模組產生器
★ 資料回復
★ 超取樣
關鍵字(英) ★ module generat
★ CDR
★ oversampling
★ data recovery
論文目次 Chapter 1 Introduction..............................................................................................1
1.1 Introduction....................................................................................................1
1.2 Motivation......................................................................................................2
1.3 Thesis Organization .......................................................................................3
Chapter 2 Overview of Data/Clock Recovery..........................................................4
2.1 Introduction....................................................................................................4
2.2 The Comparison of Clock Extraction and Oversampling Phase-Picking
Methods......................................................................................................................5
2.2.1 Probabilistic Analysis of BER ...............................................................7
2.2.2 BER Analysis of Clock Extraction ......................................................10
2.2.3 BER Analysis of Oversampling Phase-Picking...................................11
2.2.4 Simulation Results ...............................................................................13
2.3 Summary......................................................................................................16
Chapter 3 Theoretical Analysis of Oversampling Based Data Recovery............17
3.1 Introduction..................................................................................................17
3.2 The Architecture of Oversampling...............................................................18
3.3 Jitter Source of Oversampling Based Data Recovery..................................21
3.4 Bit Error Rate Analysis ................................................................................22
3.4.1 Analog Sampling for 2PAM/4PAM.....................................................23
3.4.2 Digital Sampling for 2PAM.................................................................31
3.4.3 Sliding Window Analysis ....................................................................36
3.5 Summary......................................................................................................41
Chapter 4 The Design of Input Sampler and Data Recovery Circuit.........42
4.1 Introduction..................................................................................................42
4.2 Circuit Design of Input Sampler ..................................................................43
4.2.1 Design of Sampling Circuit..................................................................43
4.2.2 Measurement and Testing Consideration.............................................52
4.3 Odd Oversampling Ratio Scheme................................................................55
4.4 Even Oversampling Ratio Scheme...............................................................63
4.5 Summary......................................................................................................67
Chapter 5 Module Generator and Implementation..............................................68
5.1 Introduction..................................................................................................68
5.2 Module Generator Design Flow...................................................................69
5.3 Design Examples..........................................................................................71
5.4 Summary......................................................................................................75
Chapter 6 Conclusions .............................................................................................76
Reference ..................................................................................................................78
Appendix 1 Analog Sampling for 2PAM..................................................................80
Appendix 2 Analog Sampling for 4PAM..................................................................83
參考文獻 [1] R. Mooney, C. Dike and S. Borkar, “A 900 Mb/s Bidirectional Signaling
Scheme,” IEEE Journal of Solid-State Circuits, Dec. 1995, vol.30, no.12, p.
1538-43
[2] M. Galles, “Spider: A High-speed Network Interconnect,” IEEE Micro Jan.-Feb.
1997, vol.17, no.1, p. 34-9
[3] Universal Serial Bus specification revision 2.0, Mar. 2000.
[4] P1394b Draft Standard for a High Performance Serial Bus(Supplement),
P1394b Draft 1.3.1, Oct 15, 2001.
[5] Y. Ota and R.G. Swartz, “Multichannel Parallel Data Link for Optical
Communication,” IEEE LTS, May. 1991, vol.2, no.2, pp. 24-32
[6] M. Cerisola, T.K. Fong, R.T. Hofmeister, L.G. Kazovsky, C.L. Lu, P. Poggiolini
and D.J.M. Sabido IX,., “CORD - A WDM Optical Network: Control
Mechanism Using Subcarrier Multiplexing and Novel Synchronization
Solutions,” IEEE International Conference on Communication, 1995, pp 261-5
[7] RAMBus specification Version 1.11, July. 2000.
[8] The Standard of Serial ATA (High Speed Serialized AT Attachment) Revision
1.0a 7-January-2003
[9] PCI Express Specification Revision 1.0 July 22, 2002.
[10] B. Razavi, Editior, Monolithic Phase Locked Loops and Clock Recovery
Circuits, IEEE Press, 1996.
[11] C. K. K. Yang, F. R. Ramin and M. A. Horowitz, “A 0.5-/spl mu/m CMOS 4.0-
Gbit/s Serial Link Transceiver with Data Recovery Using Oversampling,” IEEE
J. Solid-State Circuits, vol.33, No.5, pp.713 –722, May. 1998.
[12] H. Braunisch and Raj Nair, “On the Techniques of Clock Extraction and
Oversampling,” Hot Interconnects 9, 2001, pp139-143, Aug. 2001.
[13] C. K. K. Yang and M.A. Horowitz, “A 0.8-/spl mu/m CMOS 2.5 Gb/s
Oversampling Receiver and Transmitter for Serial Links,” IEEE J. Solid-State
Circuits, vol.31, No.12, pp.2015 –2023, Dec. 1996.
[14] Y. Moon, B. J. Lee, D. K. Jeong and G. Ahn, “A 0.6-2.5-Gbaud CMOS Tracked
3x Oversampling Transceiver with Dead-Zone Phase Detection for Robust
Clock/Data Recovery,” IEEE J. Solid-State Circuits, vol.36, No.12, Dec. 2001,
pp.1974-1983.
[15] S. H. Lee, M. S. Hwang, Y. Choi, S. Kim, Y. Moon, B. J. Lee, D. K. Jeong, W.
Kim, Y. J. Park and G. Ahn, “A 5-Gb/s 0.25-um CMOS Jitter-tolerant Variableinterval
Oversampling Clock/Data Recovery Circuit,” IEEE J. Solid-State
Circuits, vol.37, No.12, Dec. 2002, pp.1822-1830.
[16] M. Fukaishi, K. Nakamura, M. Sato, Y. Tsutsui, S. Kishi and M. Yotsuyanagi,
“A 4.25-Gb/s CMOS Fiber Channel Transceiver with Asynchronous Tree-type
Demultiplexer and Frequency Conversion Architecture,” IEEE J. Solid-State
Circuits, vol.33, No.12, pp.2139 –2147, Dec. 1998.
[17] J. K. Kang, W. Liu and R. K. Cavin, III, “A CMOS High-speed Data Recovery
Circuit Using the Matched Delay Sampling Technique,” IEEE J. Solid-State
Circuits, vol.32, No.10, pp.1588 –1596, Oct. 1997.
[18] Y. H. Chen. “Module Generator of Data Recovery Circuits Using Oversampling
Technique,” M.S. thesis, Dep. Elec. Eng., National Central University, Taiwan,
July. 2002.
[19] K. Lee, S. Kim, G. Ahn and D. K. Jeong, “A CMOS Serial Link for Fully
Duplexed Data Communication,” IEEE J. Solid-State Circuits, vol.30, No.4,
pp.353 –364, Apr. 1995.
[20] Fiber Channel-Methodologies for Jitter Specification, T11.2/Project 1230/Rev
10, June. 1999.
[21] Understanding Jitter, WAVECREST Corporation, 2001
[22] S.J. Jou, C.H. Lin, Y. H. Chen and Z.H. Li, “Module Generator of Data
Recovery for Serial Link Receiver,” IEEE SOC Conference 2003, pp.49-52,
Sept. 2003
[23] C.N. Chen, “8 Gbps Serial Link Transmitter with Adaptive Termination and
Pre-Emphasis,” M.S. dissertation, Dep. Elec. Eng., National Central University,
Taiwan, Jul. 2004.
[24] G.M.Yin, F. Op’t Eynde and W. Sansen, ”A High Speed CMOS Comparator
with 8-b Resolution,” IEEE JSCC. Vol,27, pp. 1379-1385, Dec.1988.
[25] C. K. K. Yang, “Design of High-Speed Serial Links in CMOS,” Sponsored by
Center for Integrated Systems, Sun Microsystems, and LSI Logic Inc,1998.
[26] H. Oguey and E. Vittoz, “CODYMOS Frequency Dividers achieve Low Power
Consumption and High Frequency,” Electronic Letters, Vol,9,pp. 386-387, Aug.
1973.
[27] Z.H.Li,”Design and Performance Analysis of Data Recovery Circuit Using
Oversampling Technique,” M.S. thesis, Dep. Elec. Eng., National Central
University, Taiwan, Jul. 2003.
指導教授 周世傑(Shyh-Jye Jou) 審核日期 2004-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明