博碩士論文 91521026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.219.200.80
姓名 陳筱筠(Hsiao-Yun Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 數位有限脈衝響應多階多速率之濾波器/降頻器/升頻器設計及其模組產生器
(Multirate Multistage Digital FIR Filter / Decimator / Interpolator Module Generator)
相關論文
★ 低雜訊輸出緩衝器設計及USB2實體層的傳收器製作★ 低雜訊輸出緩衝器設計及USB2實體層的時脈回復器製作
★ 應用於通訊系統的內嵌式數位訊號處理器架構★ 應用於數位儲存示波器之100MHz CMOS 寬頻放大器電路設計
★ 具有QAM/VSB模式的載波及時序回復之數位積體電路設計★ 應用於通訊系統中數位信號處理器之模組設計
★ 應用於藍芽系統之CMOS射頻前端電路設計★ 具有QAM/VSB 模式之多重組態可適應性等化器的設計與實現
★ 適用於高速通訊系統之可規劃多模式里德所羅門編解碼模組★ 應用於橢圓曲線密碼系統之低複雜性有限場乘法器設計
★ 適用於通訊系統之內嵌式數位訊號處理器★ 雷射二極體驅動電路
★ 適用於通訊系統的內嵌式數位信號模組設計★ 適用在通訊應用之可參數化內嵌式數位信號處理器核心
★ 一個高速╱低複雜度旋轉方法的統一設計架構:角度量化的觀點★ 5Gbps預先增強器之串列連結傳收機
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們實現了一個數位有限脈衝響應多階多速率之濾波器/降頻器/升頻器模組產生器。使用者能夠藉由此產生器,自動設計出高速低複雜度的數位有限脈衝響應多階多速率濾波器。此產生器利用線性相位濾波器的對稱性架構,並運用多階多速率IFIR濾波器的方法,以達到低複雜度之目的。運用polyphase representation將濾波器分解成多個子濾波器。所產生的濾波器,利用CSD乘法器、transposed direct式架構、和CSA以達到高速的要求。此產生器只需要系統規格為了擁有良好的適應性,輸出的程式碼將以可合成的行為階層硬體描述語言撰寫,讓合成工具軟體能依據使用者所指定的條件選擇最適合的架構。
我們提供了一個用於64-QAM基頻解調器的濾波器設計實例。使用Synopsys的合成工具並採用TSMC 0.25μm製程設計晶片。結果在低複雜度應用方面,減少了1.64倍的面積並節省1.95倍的功率消耗。而對於高速應用方面,此晶片能操作在714 MHz。除此之外,我們以此模組產生器設計一個CDMA規格之多階濾波器(IFIR filters)的例子,與傳統濾波器設計相比較,結果減少了1.72倍的硬體面積,節省13.10倍的功率消耗。並且以相同之規格設計一個多階多速率之降頻器,用運IFIR與polyphase representation之設計技巧,與傳統的降頻器設計相比較,結果減少了3.56倍的硬體面積,節省1.96倍的功率消耗。最後,我們還實現一個窄頻的多階多速率之升頻器,與傳統的升頻器設計相比較,結果減少了3.06倍的硬體面積,節省1.36倍的功率消耗。
摘要(英) In this thesis, a module generator, which can automate the process of designing high-speed low-complexity multirate multistage digital FIR filter / decimator / interpolator, is presented. The generator exploits architectural symmetries in linear phase filters and multistage multirate interpolated FIR filter design methodology for low complexity. In addition, the polyphase representation is used to decompose the filter into subfilters. The resulting filters utilize canonic signed digit (CSD) multipliers, a transposed direct form structure, and carry-save addition for high speed. The input of the generator requires only system-level specifications. In addition, the generator can provide three types of filter structure for different applications. Moreover, the output is a synthesizable Verilog code written in behavioral-level hardware description language (HDL) which allows the synthesis tool to select the appropriate architecture from user’s constraints. Therefore, this tool can eliminate manual calculations, coding, simulation, and verification time of the design cycle.
We have designed several filters with TSMC 0.25μm standard cell. A 64-QAM baseband design example shows that the area is reduced about 1.64 times and the power dissipation is saved about 1.95 times for low-complexity applications. Moreover, for high-speed application, the chip can operate at 714MHz. Besides, we design the IFIR filters which specification is the first version of the CDMA cellular, the area is reduced about 1.72 times and the power dissipation is saved about 13.10 times as compared with direct form design. An example of multistage decimator used in CDMA cellular shows that the area is reduced about 3.56 times and the power dissipation is saved about 1.96 times as compared with conventional decimator. Finally, an example of the narrowband multistage interpolator are designed, the area is reduced about 3.06 and the power dissipation is saved about 1.36 times as compared with conventional interpolator.
關鍵字(中) ★ 多階多速率系統
★ 數位濾波器
★ 數位降頻器
★ 數位升頻器
關鍵字(英) ★ Multirate Multistage Digital FIR Filter
★ Decimator
★ Interpolator
論文目次 Contents
Chapter 1 Introduction
1.1 Introduction 1
1.2 Motivation and Goals 5
1.3 Thesis Organization 6
Chapter 2 Digital FIR Filter Design
2.1 Basic FIR Filter Design 7
2.1.1 FIR Filter Structure 8
2.1.2 Carry Save Addition 11
2.1.3 Linear Phase FIR Filters 12
2.2 Multiplierless Filter Design 14
2.2.1 CSD Representation 14
2.2.2 CSD Multipliers 17
2.3 RTL Design Technologies for CSD Based Design 18
2.3.1 Sign Extension Elimination 18
2.3.2 Common Subexpression 20
2.3.3 Pipelining 22
Chapter 3 Multirate Multistage Digital FIR Filter Design
3.1 Basic Multirate Operations 24
3.1.1 Decimation 24
3.1.2 Interpolation 27
3.2 The Noble Identities 29
3.3 The Polyphase Representation 30
3.4 Interpolated FIR Filter Design 33
3.5 Multirate Multistage Filter Design 38
Chapter 4 Module Generator Implementation
4.1 System Specifications 41
4.2 Multistage Architecture Analysis 44
4.2.1 Interpolated FIR Filter Decomposition 44
4.2.2 Multirate Multistage FIR Filter Decomposition 49
4.3 Coefficient Calculation 50
4.4 Coefficient Optimization 50
4.4.1 Scaling Strategy 51
4.4.2 Local Search Strategy 54
4.5 Word Length Estimation 55
4.5.1 Overflow Prevention 55
4.5.2 Internal Word Length Reduction 56
4.6 Synthesizable Verilog Code Generation 57
4.6.1 Hardware Estimation 57
4.6.2 Design of the FIR Digital Filter 58
4.6.3 Design of the Interpolated FIR Filter 60
4.6.4 Design of the Multirate Multistage Filter 62
4.7 Module Generator 65
Chapter 5 Experimental Results
5.1 FIR Digital Filter Design 68
5.2 Interpolated FIR Filter Design 74
5.3 Multirate Multistage Filter Design 79
5.3.1 Interpolator 79
5.3.2 Decimator 81
Chapter 6 Conclusions
References
參考文獻 [1]P. P. Vaidyanathan, “Multirate systems and filter banks,” Englewood Cliffs, NJ: Prentice Hall, 1993.
[2]R. E. Crochiere and L. R. Rabiner, “Multirate digital signal processing,” Englewood Cliffs, NJ: Prentice Hall, 1983.
[3]“Filter design toolbox user’s guide”, version 2, MathWorks, Inc,2004.
[4]“CoCentric system studio filter design tools user guide,” Synopsys, Inc., May 2002.
[5]M. Ishikawa et al., “Automatic layout synthesis for FIR filters using a silicon compiler,” IEEE Int. Symp. Circuits Syst., pp. 2588-2591, May 1990.
[6]R. Jain, P. T. Yang, and T. Yoshino, “FIRGEN: A computer-aided design system for high performance FIR filter integrated circuits,” IEEE Trans. Signal Processing, vol. 39, pp. 1655-1668, Jul. 1991.
[7]R. Hawley, T.-J. Lin, and H. Samueli, “A silicon compiler for high-speed CMOS multirate FIR digital filters,” IEEE Int. Symp. Circuits Syst., vol. 3, pp. 1348-1351, May 1992.
[8]E. Bidet, C. Joanblanq, and P. Senn, “GENRIF: An integrated VLSI FIR filter compiler,” Eur. Conf. Design Automation, pp. 466-471, Feb. 1993.
[9]G. Wacey and D. R. Bull, “POFGEN: A design automation system for VLSI digital filters with invariant transfer function,” IEEE Int. Symp. Circuits Syst., pp. 631-634, May 1993.
[10]K. Y. Cheng, “Multiplierless Multirate FIR Digital Filter / Decimator / Interpolator Module Generator,” MS thesis, Dept. of EE, National Central Univ., Taiwan, Jun. 2003.
[11]G. W. Reitwiesner, “Binary arithmetic,” Advances in Computers, vol. 1, NY: Academic, pp. 231-308, 1966.
[12]Y. Neuvo, C. Y. Dong, and S. K. Mitra, “Interpolated finite impulse response filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 563-570, Jun. 1984.
[13]T. Saramäki,Y. Neuvo and S. K. Mitra, “Design of Computationally Efficient Interpolated FIR Filters,” IEEE Trans. Circuits Syst., VOL.35 , NO.1, Jan 1988.
[14]M. Ishikawa et al., “Automatic layout synthesis for FIR filters using a silicon compiler,” IEEE Int. Symp. Circuits Syst., pp. 2588-2591, May 1990.
[15]R. Jain, P. T. Yang, and T. Yoshino, “FIRGEN: A computer-aided design system for high performance FIR filter integrated circuits,” IEEE Trans. Signal Processing, vol. 39, pp. 1655-1668, Jul. 1991.
[16]R. Hawley, T.-J. Lin, and H. Samueli, “A silicon compiler for high-speed CMOS multirate FIR digital filters,” IEEE Int. Symp. Circuits Syst., vol. 3, pp. 1348-1351, May 1992.
[17]E. Bidet, C. Joanblanq, and P. Senn, “GENRIF: An integrated VLSI FIR filter compiler,” Eur. Conf. Design Automation, pp. 466-471, Feb. 1993.
[18]G. Wacey and D. R. Bull, “POFGEN: A design automation system for VLSI digital filters with invariant transfer function,” IEEE Int. Symp. Circuits Syst., pp. 631-634, May 1993.
[19]N. J. Fliege, “Multirate digital signal processing: multirate systems, filter banks, wavelets,” 1994.
[20]P. Reutz, “The architectures and design of a 20-MHz real-time DSP chip set,” IEEE JSSC, vol. 24, pp. 338-348, Apr. 1989.
[21]S.-Y. Wu, “Low-power multirate IF digital frequency down converter for wireless communication systems,” MS thesis, Dept. of EE, National Central Univ., Taiwan, Jun. 1997.
[22]R. Hartley, “Subexpression sharing in filters using canonic signed digit multipliers,” IEEE Trans. Circuits Syst. II, vol. 43, pp. 677-688, Oct. 1996.
[23]H. Samueli, “An improved search algorithm for the design of multiplierless FIR filters with powers-of-two coefficients,” IEEE Trans. Circuits Syst., vol. 36, pp. 1044-1047, Jul. 1989.
[24]T.-J. Lin and H. Samueli, “A 200-Mhz CMOS x/sin(x) digital filter for compensating D/A converter frequency response distortion in high-speed communication systems,” IEEE GLOBECOM, vol 3, pp. 1722-1726, Dec. 1990.
[25]R. A. Hawley, B. C. Wong, T.-J. Lin, J. Laskowski, and H. Samueli, “Design techniques for silicon compiler implementations of high-speed FIR digital filters,” IEEE JSSC, vol. 31, pp. 656-667, May 1996.
[26]I.-C. Park and H.-J. Kang, “Digital filter synthesis based on an algorithm to generate all minimal signed digit representations,” IEEE Trans., CAD of IC and Syst., vol. 21, pp. 1525-1529, Dec. 2002.
[27]A. P. Vinod, E. M.-K. Lai, A. B. Premkumar, and C. T. Lau, “FIR filter implementation by efficient sharing of horizontal and vertical common subexpressions,” Electronics Letters, vol. 39, pp. 251-253, Jan. 2003.
[28]B. C. Wong and H. Samueli, “A 200-MHz all-digital QAM modulator and demodulator in 1.2μm CMOS for digital radio applications,” IEEE JSSC, vol. 26, pp. 1970-1979, Dec. 1991.
[29]R. Hartley, “Optimization of canonic signed digit multipliers for filter design,” IEEE ISCAS, pp.1992-1995, 1992.
[30]R. W. Mehler and D. Zhou, “Architectural synthesis of finite impulse response digital filters,” Symp. Integrated Circuits Syst. Design, pp. 20-25, Sep. 2002.
[31]M. Bellanger, G. Bonnerot, and M. Coudreuse, “Digital filtering by polyphase network: application to sample rate alteration and filter banks,” IEEE Trans. ASSAP, vol. ASSP-24, pp. 109-114, Apr. 1976.
[32]D. J. Shpak and A. Antoniou, “A generalized Reméz method for the design of FIR digital filters,” IEEE Trans. Circuits Syst., pp. 161-174, Feb. 1990.
[33]Y. C. Lim and S. R. Parker, “FIR filter design over a discrete powers-of-two coefficient space,” IEEE Trans. Acoust., Speech, Signal Processing, pp. 583-591, Jun. 1983.
[34]X. Hu, L. S. DeBrunner, and V. DeBrunner, “An efficient design for FIR filters with variable precision,” IEEE Int. Symp. Circuits Syst., vol. 4, pp. IV-365-IV-368, May 2002.
[35]D. Kodek and K. Steiglitz, “Comparison of optimal and local search methods for designing finite wordlength FIR digital filters,” IEEE Trans, Circuits Syst., vol. 28, pp. 28-32, Jan. 1981.
[36]E. C. Ifeachor and B. W. Jervis, “Digital signal processing: a practical approach,” Addison-Wesley, 1993.
[37]“DesignWare foundation library databook,” Synopsys, Inc., Jan. 2002.
[38]S. J. Jou, C. H. Kuo, M. T. Shiau, J. Y. Heh and C. K. Wang, “VLSI implementation of timing recovery and carrier recovery for QAM/VSB dual mode,” International Symp. on VLSI Technology, Systems and Applications, Taipei, R. O. C. June 1999, pp.159-162.
[39]“Design Compiler User Guide,” Synopsys, Inc., May 2002.
[40]“The CDMA network engineering handbook, volume 1: concepts in CDMA,” Qualcomm Inc., Mar. 1993.
[41]S.-J. Jou, S.-Y. Wu, and C.-K. Wang, “Low-power multirate architecture for IF digital frequency down converter,” IEEE Trans. Circuits Syst. II, vol. 45, pp. 1487-1494, Nov. 1998.
指導教授 周世傑(Shyh-Jye Jou) 審核日期 2004-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明