博碩士論文 965202009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:18.218.99.80
姓名 呂坤錡(Kun-Chi Lu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 於 802.16m WiMAX 網路之可調適頻道預測
(Adaptive Modulation with Channel Prediction in 802.16m WiMAX Networks)
相關論文
★ 無線行動隨意網路上穩定品質服務路由機制之研究★ 應用多重移動式代理人之網路管理系統
★ 應用移動式代理人之網路協同防衛系統★ 鏈路狀態資訊不確定下QoS路由之研究
★ 以訊務觀察法改善光突發交換技術之路徑建立效能★ 感測網路與競局理論應用於舒適性空調之研究
★ 以搜尋樹為基礎之無線感測網路繞徑演算法★ 基於無線感測網路之行動裝置輕型定位系統
★ 多媒體導覽玩具車★ 以Smart Floor為基礎之導覽玩具車
★ 行動社群網路服務管理系統-應用於發展遲緩兒家庭★ 具位置感知之穿戴式行動廣告系統
★ 調適性車載廣播★ 車載網路上具預警能力之車輛碰撞避免機制
★ 應用於無線車載網路上之合作式交通資訊傳播機制以改善車輛擁塞★ 智慧都市中應用車載網路以改善壅塞之調適性虛擬交通號誌
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 全球微波存取互通介面(WiMAX)是目前無線網路中可以實現廣泛的傳輸距離以及高速的接取服務之技術,其中於IEEE 802.16e標準訂定了使用者移動的規範與支援,而於IEEE 802.16m中更開啟了使用者於高速移動時可以高速傳輸的大門,使之成為目前最引人矚目之無線網路技術。然而WiMAX雖具有上述之特性,但使用者移動或者環境改變時,仍會有由於頻道狀況改變而造成資料傳輸率下降之問題。目前的研究指出,對於此問題可以提出可調適調變的技術來解決,當使用者與基地台之間的頻道狀況差時,可以使用較為強健的調變來做傳輸;而當頻道狀況佳時,則可以使用傳輸速率較快的調變來做傳輸,然而目前的研究對於如何預測頻道之品質並沒有加以探討,或者是利用使用者目前以及之前頻道的狀況來做為頻道未來品質之預測,前者將會使得當使用者回報頻道品質時,可能會造成資訊的延遲而產生不適當的調變調整,後者將會由於環境的改變,導致預測之不準確,以致於傳輸錯誤率提昇。本篇論文提出一個頻道預測演算法來做為改進,將使用者之移動速率以及方向也包含在預測所需的資訊之中,並且使用多天線之技術(MIMO)來收集周圍使用者所量測到的頻道訊號強度。藉由使用者移動之資訊可以獲得下一時間點使用者之確實位置,而收集周圍基地台所量測得的頻道品質可以作為頻道預測之演算法的資訊,即可預測出使用者於下一時間點所在位置之頻道品質,接著即可調整調變的方式,來達到傳輸效率的改善。
本篇論文透過QualNet來模擬,模擬之結果顯示使用所提出之演算法會使得總吞吐量改善17%、延遲獲得15%的改善,也代表了預測之準確性有明顯的提昇。
摘要(英) Worldwide Interoperability for Microwave Access (WiMAX) can realize the long distance transmission and high speed access in current wireless network. IEEE 802.16e standard specifies the support of user mobility. IEEE 802.16m standard specifies the high speed transmission under high mobility. Although WiMAX has above characteristics, the transmission rate decreases when a user moves to another location or when the radio environment changes due to different channel quality in a cell area. Adaptive modulation is used to address the problem caused by channel quality variation. Adapting a robust modulation to transmit data when the channel quality becomes worse and high speed modulation when the channel quality becomes better can reduce the variance of the delay and packet loss of the network. However, it takes time to measure the channel quality, to determine a new modulation, to propagate the information of the new modulation and to adapt to a new modulation. Channel quality prediction is thus used to decide new modulation in advance. The thesis proposed a novel channel prediction method to improve the precision of the channel prediction. The method takes the position and speed of a user into account and collects the signal strengths measured by neighboring users by multi-input multi-output (MIMO) technology. According to the user position and speed, the future position can be estimated. The collected signal strengths of the channel from other users can be used for prediction, and the channel quality of the user future position can be predicted and the modulation can be adjusted in advance. Therefore, the variation of packet loss and delay and the jitter can be reduced, and the network quality is thus improved.
Simulations are done with QualNet to evaluate the proposed method. The results of the simulations indicate the improvement of 17% throughput and 15% delay time. Therefore the accuracy of the channel quality prediction has been improved.
關鍵字(中) ★ 可調適調變
★ 多天線技術
★ 預測
★ 全球微波存取互通介面
關鍵字(英) ★ Adaptive modulation
★ MIMO
★ prediction
★ WiMAX
論文目次 Chapter 1. Introduction 1
1.1 Overview 1
1.2 Motivation and Goals 2
1.3 Thesis Organization 4
Chapter 2. Background and Related Work 5
2.1 Channel Prediction Technology 5
2.2 Propagation Model 12
Chapter 3. The Proposed Neighboring Information Based  Channel Quality Prediction Method 16
3.1 Assumptions and Notations 16
3.2 System Procedure 18
3.3 Signal Strength and Position Collection 21
3.4 Model Adjustment and Prediction 23
3.5 Modulation Decision and Error Correction 29
Chapter 4. Simulation Results and Discussions 35
4.1 Simulation Environment 35
4.2 Experiments and Results 37
Chapter 5. Conclusions and Future Work 60
5.1 Conclusion 60
5.2 Future Work 60
References 61
參考文獻 [1] IEEE 802.16-2004, Part 16: Air Interface for Fixed Broadband Wireless Access Systems, Standard for Local and Metropolitan Area Networks, Oct. 2004.
[2] C. Eklund, R. Marks, K. Stanwood and S. Wang, “IEEE Standard 802.16: A Technical Overview of the WirelessMAN (TM) Air Interface for Broadband Wireless Access, IEEE Communications Magazine, vol. 40, no. 6, pp. 98-107, Jun. 2002.
[3] IEEE Std 802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks - Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Feb. 2006.
[4] IEEE 802.16 Task Group m, “Draft IEEE 802.16m System Description Document”, Jun. 2008.
[5] B. Forouzan and S. Fegan, Data Communications and Networking, McGraw-Hill, Jan. 2006.
[6] F. Ohrtman, WiMAX Handbook: Building 802.16 Wireless Networks, McGraw-Hill, May 2005.
[7] L. Nuaymi, WiMAX: Technology for Broadband Wireless Access, John Wiley, Mar. 2007.
[8] S. Falahati, A. Svensson, M. Sternad and T. Ekman, “Adaptive Modulation Systems for Predicted Wireless Channels,” Proceedings of Global Telecommunications Conference, San Francisco, vol. 1, pp. 357-361, Dec. 2003.
[9] J. Andrews, A. Ghosh and R. Muhamed, Fundamentals of WiMAX Prentice Hall, Feb. 2007.
[10] A. J. Goldsmith and S. G. Chua, “Adaptive Coded Modulation for Fading Channels,” IEEE Transactions on Communications, vol. 46, no. 5, pp. 595-602, May 1998.
[11] A. Svensson, “An Introduction to Adaptive QAM Modulation Schemes for Known and Predicted Channels,” Proceedings of the IEEE, vol. 95, no. 12, pp. 2322-2336, Dec. 2007.
[12] G. E. Oien, H. Holm and K.J. Hole, “Impact of Channel Prediction on Adaptive Coded Modulation Performance in Rayleigh Fading,” IEEE Transactions on Vehicular Technology, vol. 53, no. 3, pp. 758-769, May 2004.
[13] I. C. Wong, and B.L. Evans, “Joint Channel Estimation and Prediction for OFDM Systems,” Proceedings of Global Telecommunications Conference, Washington, vol. 4, pp. 2255-2259, Dec. 2005.
[14] A. D. Hallen, H. Hallen and Y. T. Sheng, “Long Range Prediction and Reduced Feedback for Mobile Radio Adaptive OFDM Systems,” IEEE Transactions on Wireless Communications, vol. 5, no. 10, pp. 2723-2733, Oct. 2006.
[15] A. D. Hallen, S.Q. Hu and H. Hallen, “Long-Range Prediction of Fading Signals - Enabling Adapting Transmission for Mobile Radio Channels,” IEEE Signal Processing Magazine, vol. 17, no. 3, pp. 62-75, May 2000.
[16] Y. T. Sheng, A. D. Hallen and H. Hallen, “Reliable Adaptive Modulation Aided by Observations of Another Fading Channel,” IEEE Transactions on Communications, vol. 52, no. 4, pp. 605-611, Apr. 2004.
[17] Y. T. Sheng and A. D. Hallen, “Adaptive Modulation Using Outdated Samples of Another Fading Channel,” Proceedings of Wireless Communications and Networking, Orlando, Florida, vol. 1, pp. 477-481, Mar. 2002.
[18] T. K. Sarkar, J. Zhong, K. Kyungjung, A. Medouri, and M. Salazar-Palma, “A Survey of Various Propagation Models for Mobile Communication,” IEEE Antennas and Propagation Magazine, vol. 45, no. 3, pp. 51-82, Jun. 2003.
[19] H. L. Bertoni, Radio Propagation for Modern Wireless Systems, Prentice Hall, Jan. 2000.
[20] O. Knauf, I. Gruber and H. Li, “Performance of Ad Hoc Routing Protocols in Urban Environments,” Proceedings of European Wireless, Barcelona, Feb. 2004.
[21] A. Medeisis and A. Kajackas, “On the Use of the Universal Okumura-Hata Propagation Prediction Model in Rural Areas,” Proceedings of Vehicular Technology Conference, Tokyo, vol. 3, pp. 1815-1818, May 2000.
[22] A. Hecker, M. Neuland and T. Kuerner, “Propagation Models for High Sites in Urban Areas,” Advances in Radio Science, vol. 4, pp. 345-349, 2006.
[23] V. S. Abhayawardhana, I. J. Wassell, D. Crosby, M. P. Sellars, and M. G. Brown, “Comparison of Empirical Propagation Path Loss Models for Fixed Wireless Access Systems,” Vehicular Technology Conference, vol. 1, pp. 73-77, Jun. 2005.
[24] A. V. Rial, J. Hauck, M. Buchholz and F. A. Agelet, “Empirical Propagation Model for WiMAX at 3.5 GHz in an Urban Environment,” Microwave and Optical Technology Letters, vol. 50, no. 2, pp. 483-487, Feb. 2008.
[25] P. Barsocchi, “Channel Models For Terrestrial Wireless Communications: a Survey ,” Technical Report 2006-TR-16, Information Science and Technologies Institute, Apr. 2006.
[26] J. Milanovic, S. Rimac-Drlje and K. Bejuk, “Comparison of Propagation Models Accuracy for WiMAX on 3.5 GHz,” Proceedings of Electronics, Circuits and Systems, Morocco, Marrakech, pp. 111-114, Dec. 2007.
[27] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius and R. Bianchi, “An Empirically Based Path Loss Model for Wireless Channels in Suburban Environments,” Selected Areas in Communications, vol. 17, no. 7, pp. 1205-1211, Jul. 1999.
[28] V. Erceg, K. V. Hari, M. S. Smith, D. S. Baum, K. P. Sheikh, C. Tappenden, J. M. Costa, C. Bushue, A. Sarajedini, R. Schwartz, D. Branlund, T. Kaitz and D. Trinkwon, “Channel Models for Fixed Wireless Applications,” Technical Report 802.16.3c-01/29r4, IEEE 802.16 Broadband Wireless Access Working Group, Jul. 2001.
[29] Z. Lei, W. Gaofeng, and D. Wanli, “Adaptive Contention Window Adjustment for 802.11-Based Mesh Networks,” Proceedings of Wireless Communications, Networking and Mobile Computing, Dalian, China, pp. 1-4, Oct. 2008.
[30] C. Yunli, Z. Qing-An and D. P. Agrawal, “Performance Analysis and Enhancement for IEEE 802.11 MAC Protocol,” Proceedings of International Conference Telecommunications, Alaska, Anchorage, vol. 861, pp. 860-867, Mar. 2003.
[31] L. Fausett, Numerical methods, Prentice Hall, Jan. 2003.
[32] Scalable Network Technologies, http://www.scalable-networks.com/publications/documentation/index.php
指導教授 周立德(Li-der Chou) 審核日期 2009-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明