以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:39 、訪客IP:18.227.209.101
姓名 房家壽(Kyar-Shou Fang) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體
(Polymer Light-Emitting Diodes with Composition-Graded Amorhpus Silicon-Alloy Electron Injection and Hole Buffer Layers.)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 摘要
高分子發光二極體(PLED)是近年來共軛高分子最具有工業應用發展潛力的項目之一。與小分子發光二極體比較,具有製程簡單,低成本,可大面積化,可做撓曲性面板,輕薄化等優點。但目前遇到操作電壓高,壽命短,發光效率低,電極介面接合較差等問題。
現今顯示器市場廣大,且薄膜電晶體驅動的高分子發光二極體已成為相當重要的發光組件之一,為使薄膜電晶體與高分子發光元件的製程能進一步整合,本論文探討的主題是利用n-型非晶矽氫及摻雜梯度非晶碳化矽氫薄膜材料作為陰極電極與高分子發光層之間的電子注子層,以降低電子注入的能障層而提高電子注入率。另外,我們亦採用很薄的p-型非晶矽氫及摻雜梯度非晶矽碳化矽氫充當 ITO 透明陽極與高分子發光層之間的緩衝層,以緩衝電洞移動率,而此緩衝層也可阻擋陽極中的銦(In)滲透到高分子發光層所引發的劣化現象對元件特性不良的影響。
加入最佳厚度的非晶質電子注入層及很薄緩衝層的PLED結構,在電流密度為 300 mA/cm2 時,本元件的最高亮度可9350 cd/m2,頻譜峰值為579 nm,半高寬為36 nm,發出橘光。摘要(英) Abstract
In order to improve the electroluminescence (EL) properties of polymer light-emitting diodes (PLEDs) with the increased of electron injection efficiency and balanced hole injection, the thin doped composition-graded (CG) n-a-SiC:H and p-a-SiC:H films were employed as the electron injection layer (EIL) and hole buffer layer in the poly(2-methoxy-5-(2’ethyl-hexoxy)-1,4-phenylene-vinylene (MEH-PPV) polymer PLEDs. Also, surface modification of indium-tin-oxide (ITO) electrode by oxygen-plasma treatment was used in this work. By using the above techniques, the electroluminescence (EL) threshold voltage of a PLED could be reduced and its brightness enhanced. The achieved brightness of the best device was 9350 cd/m2, and its EL threshold voltage was 4.2 V.關鍵字(中) ★ 具組成梯度能隙非晶質矽合金
★ 高分子發光二極體關鍵字(英) ★ polymet light-emitting diode
★ Composition-Graded Amorphous Silicon-Alloy論文目次 Contents
Abstract………………………………………………………………(IV)
Table Captions……………………………………………………… (Ⅴ)
Figure Captions………………………………………………………(Ⅵ)
Chapter 1 INTRODUCTION……………………………… 1
Chapter 2 EXPERIMENTAL PROCEDURES……………… 4
2.1 Thermal Evaporation System… ……………… 4
2.2 Spin Coating System………… ………………… 4
2.3 Preparation of Amorphous Thin-Films………… 5
2.3.1 Deposition system………………………… 5
2.3.2 Deposition of a-SiC:H Film … …………… 5
2.4 Characteristics of Polymer Material…………… 8
2.5 Device Synopsis………………………………… 9
2.6 Device Fabrications…………………………… 14
2.7 Measurement Techniques……………………… 21
2.7.1 Optical bandgap of amorphous films……… 21
2.7.2 Resistivity………………………………… 21
2.7.3 EL intensity and Brightness……………… 22
2.7.4 EL Spectrum……………………………… 22
Chapter 3 RESULTS and DISCUSSION……………………28
3.1 Effect of Oxygen-Plasma Treatment on ITO… 28
3.2 Design Considerations and Characteristics of various PLED's………………………………… 28
3.2.1 Constant bandgap n-a-SiC:H EIL for PLED's………………………………28
3.2.1.2 Effect of thickness of n-a-SiC:H EIL on
PLED (Devices 1, 2, 3, and 6)..................29
3.2.2 Composition-graded (CG) n-a-SiC:H EIL
for PLED (Device 4)…………………… 30
3.2.3 Comparison of Devices 3, 4, and 5……… 30
3.2.4 Comparison of Devices 6 and 7………… 34
3.2.5 PLED with CG n-a-SiC:H EIL and p-a-SiC:H buffer layer (Device 8)……… 34
3.2.6 Comparison of the high performance of PLEDs (Devices 4, 5, and 8………35
3.3 Current-Conduction Mechanism……………… 39
3.3.1 Ideality factor……………………………39
3.3.2 Low Electric Field Region………………… 39
3.3.3 High Electric Field Region………………… 40
3.4 EL Spectrum…………………………………… 44
Chapter 5 CONCLUSION……………………………………… 49
REFERENCES …………………………………………………… 51
Abstract
In order to improve the electroluminescence (EL) properties of polymer light-emitting diodes (PLEDs) with the increased of electron injection efficiency and balanced hole injection, the thin doped composition-graded (CG) n-a-SiC:H and p-a-SiC:H films were employed as the electron injection layer (EIL) and hole buffer layer in the poly(2-methoxy-5-(2’ethyl-hexoxy)-1,4-phenylene-vinylene (MEH-PPV) polymer PLEDs. Also, surface modification of indium-tin-oxide (ITO) electrode by oxygen-plasma treatment was used in this work. By using the above techniques, the electroluminescence (EL) threshold voltage of a PLED could be reduced and its brightness enhanced. The achieved brightness of the best device was 9350 cd/m2, and its EL threshold voltage was 4.2 V.
Table Captions
Table 1. Comparison of Organic and Polymer Materials………………3
Table 2. Deposition conditions and Eopt’s of various amorphous films..10
Table 3. The summaries of EL characteristics for all fabricated devices....
…………………………………………………………………45
Figure Captions
Fig. 2-1 The PECVD system with a stainless steel mesh attached to
upper (cathode) electrode…………………………………… 6
Fig. 2-2 Variation of optical bandgap of i-a-SiC:H with carbon hydride gas fraction (C/(C + Si)) in C2H2-SiH4, C2H4-SiH4 and CH4-SiH4 gas mixtures………………………………………..7
Fig. 2-3 (a) Synthesization, and (b) Spectral analysis of MEH-PPV.....11
Fig. 2-4 (a) The basic structure, and (b) schematic optical bandgap
diagram of a PLED under forward-bias.……………………...12
Fig. 2-5 The schematic optical bandgap diagram of a heterostructure
PLED………………………………………………………..13
Fig. 2-6 (a) The schematic cross-section of n+-a:SiC:H PLED, and
(b) the corresponding optical bandgap diagram under forward -bias……………………………………………………….17
Fig. 2-7 (a) The schematic cross-section of the PLED with Composition
(carbon)-graded n+-a-SiC:H EIL, accompanied with the gas
flow-rates diagram, and (b) the schematic optical bandgap
diagram of the PLED under forward-bias……….…………...18
Fig. 2-8 (a) The schematic cross-section of the PLED with
Composition (carbon)-graded p+-a-SiC:H buffer layer PLED
(Device 7), accompanied with the gas flow-rates diagram, and
(b) the schematic optical bandgap diagram of the PLED under
forward-bias…………………..................................................19
Fig. 2-9 (a) The schematic cross-section of of the PLED with
Composition (carbon)-graded n+-a-SiC:H EIL and p+-a:SiC:H
buffer layer PLEDs, and (b) the corresponding optical bandgap
diagram for the PLED under forward-bias…………………...20
Fig. 2-10 The setup of UV/VIS/NIR spectrometer for measuring optical
bandgap of films……………………………………………...23
Fig. 2-11 Plot of (αhv)1/2 vs. photon energy (hv) for a MEH-PPV polymer film…………………………………….……………………..24
Fig.2-12 The schematic diagram of four point probe measurement setup.
The outer two probes force a current through the sample; the
inner two probes were used to measure the voltage drop…….25
Fig. 2-13 Schematic diagram of EL intensity measurement setup……...26
Fig. 2-14 Setup for measuring EL spectrum of PLED……………….....27
Fig. 3-1 B-V curves of the PLEDs with various constant bandgap n-a-SiC:H EIL thickness….…………………………………..31
Fig. 3-2 The current density and brightness versus applied voltage curves for Device 4…………………………………………...32
Fig. 3-3 Comparison of B-V for Devices 3, 4, and 5. The n-a-SiC:H layers in these devices were all deposited at 70。C substrate temperature…………………………………………………...33
Fig. 3-4 B-V curves for Devices 6 and 7………………………………36
Fig. 3-5 The current density and brightness versus applied voltage curves for Device 8…………………………………………...37
Fig. 3-6 B-V curves for the Devices 4, 5 and 8………………………..38
Fig. 3-7 Plots of semi-logarithmic J-V curves for devices 4 and 8, where
η is the ideality factor………………………………………...41
Fig. 3-8 Plots of log (J) versus log (V) for Device 4…………………..42
Fig. 3-9 Plots of log (J) versus log (V) for Device 8…………………..43
Fig. 3-10 Normalized EL spectra of (a) Device 3, and (b) Device 4……46
Fig. 3-11 Normalized EL spectra of (a) Device 5, and (b) Device 6……47
Fig. 3-12 Normalized EL spectra of (a) Device 7, and (b) Device 8……48參考文獻 REFERENCES
[1] Arno Kraft, Andrew C. Grimsdale, and Andrew B. Holmes,
“Electroluminescent Conjugated Polymers-Seeing Polymers in a
New Light,” Angew. Chem. Int. Ed. 1998, 37, pp. 402-428.
[2] C. W. Tang and S. A. Van Slyke, “Organic electroluminescent
diodes,” Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
[3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackley, R. H. Friend, P. L. Burn, and A. B. Holmes, “Light-emitting diodes based on conjugate polymers,” Nature, vol. 347, pp. 539-541, 1990.
[4] King, Christopher N, “Electroluminescent displays,” J. SID., vol. 4, pp. 1-4, 1996.
[5] K. Betsui, F. Namiki, Y. Kanazawa, H. Inoue, “High-resolution Plasma Display Panel,” Fujitsu Sci. Tech. J., vol. 35, pp. 229-239. 1999.
[6] F. Courreges, “Parameters in FED Product Design,” SID Digest of Technical Papers, vol. 27, pp. 45, 1996.
[7] D. D. C. Bradley, A. R. Brown, P. L. Burn, R. H. Friend, A. B.
Holmes, and A. Kraft, “Electro-optic properties of precursor route
poly(arylene vinylene)polymers,” Electronic Properties of Polymers,
Solid State Science. Heidelberg, Germany: Springer, vol. 107, pp.
304-309, 1992.
[8] D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa, “Amorphous Silicon-Carbide Thin-Film Emitting Diode,” Optoelectronics Devices and Technologies, vol. 1, no. 1, pp. 67-84, 1986.
[9] J. Y. Chen, “Characteristics of a-SiC:H Double Composition
Dopant Graded Gap p-i-n Thin Film Light Emitting Diodes,” M.S.
Thesis, NCU, Taiwan, R.O.C, 1995.
[10] F. J. Pai, “Characterisics of a-Si:H Emitter HBT and Polymer LED,” M. S. Thesis, NCU, Taiwan, R.O.C, 2001.
[11] R. A. Street, J. C. Knights, and D. K. Biegelsen, “Luminescence Studies of Plasma-Deposited Hydrogenated Silicon,” Phys. Rev. B, vol. 14, no. 4, pp. 1880-1991, 1978.
[12] Y. A. Chen, M. L. Hsu, L. H. Laih, J. W. Hong, and C. Y. Chang,
“Characteristics of SiC-based thin-film LED fabricated with a
plasma-enhanced CVD system having a mesh,” IEE Electronics
Letters, vol. 35, pp. 1274-1275, 1999.
[13] C. Z. Wu, “Organic Thin-Film Light-Emitting Diodes Techniques
and Application in Flat-Display,” Electronics Information,
vol.4, no.2, pp. 4-12, 1996.
[14] Y. Yang, and A.J. Hegger, “Polyaniline as a transparent electrode
for polymer light-emitting diodes: Lower operating voltage and
higher efficiency,” Appl. Phys. Lett., vol. 64, pp.1245-1247, 1994.
[15] S. Karg, J. C. Scott, J. R. Salem, and M. Angelopoulos, “Increased
Brightness and Lifetime of Polymer Light-Emitting Diodes with
Polyaniline Anodes,” Synthetic Metals, vol. 80, pp. 111-117, 1996.
[16] C. Adachi, T. Tsutsui and S. Saito, “Confinement of charge carriers and molecular excitons within 5-nm-thick emitter layer in organic electroluminescent devices with a double heterostructure,” Appl. Phys. Lett., vol. 57, pp. 531-533, 1990.
[17] J. K. Chen, “Characteristics of a-SiC;H Double Composition
Dopant Graded Gap p-i-n Thin-Film Light-Emitting Diodes,” M. S.
Thesis, NCU, Taiwan, R.O.C., 1995.
[18] J. Tanc, “Amorphous and Liquid Semiconductors,” chap. 5, Plenum
Press, pp.175, 1974.
[19] J. R. Sheas, H. Antoniadis, M. Hueschen, W. Leonard, J.Miller, R.
Moon, D. Roitman, and A. Stocking, “Organic Electroluminescent
Devices,” Science, vol. 273, pp. 884-888, 1996.
[20] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M.
McCarty, and M. E. Thompson, “Reliability and degradation of
organic light emitting devices,” Appl. Phys. Lett., vol. 65, pp. 2922-
2924, 1994.
[21] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, and J.
A. Goitia, “Degradation and failure of MEH-PPV light-emitting
Diodes,” J. Appl. Phys., vol. 79, pp. 2745-2751, 1996.
[22] C. C. Wu, C. I. Wu, J. C. Sturm, A. Kahn, “Surface modification of
indium tin oxide by plasma treatment: An effective method to
improve the efficiency, brightness, and reliability of organic light
emitting devices., Appl. Phys. Lett., vol. 70, pp. 1348-1350, 1997.
[23] Kwang Ho Lee, Ho Won Jang, Ki-m Kim, Yoon-Heung Tak, and
Jong-Lam Lee, “Mechanism for the increase of indium-tin-oxide
work function by O2 inductively coupled plasma treatment,” J. Appl.
Phys., vol 95, pp. 586-590, 2004.
[24] I. D. Park, “Carrier tunneling and device characteristics in polymer
light-emitting diodes,” J. Appl. Phys., vol. 75, pp. 1656-1666, 1994.
[25] P. S. Davids, Sh. M. Kogan, I.D. Park, and D. L. Smith, “Charge
injection in organic light-emitting diodes: Tunneling into low
mobility materials,” Appl. Phys. Lett., vol. 69, pp. 2270-2272, 1996.
[26] S. T. Lee, Z. Q. Gao, and L. S. Hung, “Metal diffusion from
electrodes in organic light-emitting diodes,” Appl. Phys. Lett., vol.
75, pp.1404-1406, 1999.
[27] Wang-Lin Yu, Jian Pei, Yong Cao, and Wei Huang, “Hole-injection
enhancement by copper phythacyanine (CuPc) in blue
polymer light-emitting diodes,” J. Appl. Phys., vol. 89, pp. 2343
2350, 2001.
[28] S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic
electroluminescent devices with improved stability,” Appl.
Phys. Lett., vol. 69, pp. 2160-2162, 1996.
[29] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S.
T. Lee, “Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer,” Appl. Phys. Lett., vol. 83, pp. 1038-1040, 2003.
[30] I-Min Chan, Tsung-Yi Hsu, and Franklin C. Hong, “Enhanced hole
injections in organic light-emitting devices by depositing
nickel oxide on indium tin oxide anode,” Appl. Phys. Lett., vol. 81,
pp. 1899-1901, 2002.
[31] Hari Singh, Nalwa,“Handbook of advanced electronic and
photonic materials and devices,”pp. 3-41, Academic Press, 2001.
[32] M. Koehler and I. A. Hummelgen,“Regional approximation
approach to space charge limited tunneling injection in polymer
devices,”J. Appl. Phys., vol.87, pp. 3074-3079, 2000.
[33] Donald A. NEAMEN, Semiconductor physics & Devices: Basic
Principles, 2nd ed., Chap 7, IRWIN, 1997.
[34] P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, “Electron
and hole transport in poly(p-phenylene vinylent),” Appl. Phys. Lett.,
vol. 68, pp. 3308-3310, 1996.
[35] M. A. Lampert and P. Mark, “Current injection in Solids,” Chap. 2,
4, 5, Academic Press, 1970.指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2004-6-21 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare