參考文獻 |
[1] F. Shafai, K.J. Schult, G. F.R. Gibson, A.G. Bluschke, and D.E. Somppi “Fully parallel 30-MHz, 2.5-Mb CAM”, IEEE Journal of Solid-State Circuits, vol. 33, no. 11, pp.1690-1696, Nov.1998.
[2] C.A. Zukowski and Shao-Yi Wang, “Use of selective precharge for low-power content-addressable memories”, in Proc. IEEE Int. Symp. Circuits and Systems, June 1997, pp. 1788-1791.
[3] T. Juan, T. Lang, and J.J. Navarro, “Reducing TLB power requirements”, in Proc. IEEE Int. Symp. Low Power Electronics and Design, Aug. 1997, pp.196 – 201.
[4] K.-J. Lin and C.-W. Wu, “A low-power CAM design for LZ data compression”, IEEE Trans. Computers, vol. 49, no.10, pp. 1139 – 1145, Oct. 2000
[5] G. Thirugnanam, N. Vijaykrishnan, and M.J. Irwin, “A novel low power CAM design”, in Proc. IEEE ASIC/SOC Conference, Sept. 2001, pp. 198 – 202.
[6] Y.-L. Hsiao, D.-H. Wang, and C.-W. Jen, “Power modeling and low-power design of content addressable memories”, in Proc. IEEE Int. Symp. Circuits and Systems, May 2001, pp. 926 – 929.
[7] H. Miyatake, M. Tanaka, and Y. Mori,” A design for high-speed low-power CMOS fully parallel content-addressable memory macros”, IEEE Journal of Solid-State Circuits, vol. 36, no. 6, pp. 956 – 968, June 2001.
[8] C.-S. Lin, J.-C. Chang, and B.-D. Liu, “A low-power precomputation-based fully parallel content-addressable memory”, IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp.654-662, Apr. 2003.
[9] I. Arsovski, T. Chandler, and A. Sheikholeslami, “A ternary content-addressable memory (TCAM) based on 4T static storage and including a current-race sensing scheme”, IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp. 155 – 158, Jan. 2003.
[10] G. Kasai, Y. Takarabe, K. Furumi, and M. Yoneda “200MHz/200MSPS 3.2W at 1.5V Vdd, 9.4Mbits ternary CAM with new charge injection match detect circuits and bank selection scheme”, in Proc. IEEE Custom Integrated Circuits Conference, Sept. 2003, pp. 387 – 390.
[11] I. Arsovski and A. Sheikholeslami, “A mismatch-dependent power allocation technique for match-line sensing in content-addressable memories”, IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp.1958-1966, Nov. 2003.
[12] T. Chadwick, T. Gordon, R. Nadkarni, J. Rowland “An ASIC-embedded content addressable memory with power-saving and design for test features”, IEEE Custom Integrated Circuits Conference, May. 2001, pp. 183 – 186.
[13] S. Jones, “Design, selection and implementation of a content-addressable memory for a VLSI CMOS chip architecture”, in Proc. IEEE Computers and Digital Techniques, vol. 135, no. 3, pp. 165 – 172, May 1988.
[14] S.R. Ramirez-Chavez, “Encoding don't cares in static and dynamic content-addressable memories”, IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol.39, no. 8, pp. 575-578, Aug. 1992.
[15] Inc. MOSAID Technologies, “The next generation of content addressable memories”, http://www.mosaid.com/, 1999.
[16] V. Lines, A. Ahmed, P. Ma, S. Ma, R. McKenzie, H.-S. Kim, and C. Mar, “66 MHz 2.3 M ternary dynamic content addressable memory”, IEEE Int. Workshop on Memory Technology, Design and Testing, Aug. 2000, pp. 101-105.
[17] W. K. Al-Asssdi, A. P. Jayasumana, and Y. K. Malliya, “On fault modeling and testing of content-addressable memories”, Proc. IEEE Int. Workshop on Memory Technology, Design and Testing, Aug. 1994, pp. 78-83.
[18] P. R. Sidorowicz and J. A. Brzozowski, “An approach to modeling and testing memories and its application to CAMs”, Proc. IEEE VLSI Test Symp. (VTS), Apr. 1998, pp. 411-416.
[19] P. R. Sidorowicz, “Modeling and testing transistor faults in content-addressable memories”, Record of IEEE Int. Workshop on Memory Technology, Design and Testing, Aug. 1999, pp. 83-90.
[20] K. J. Lin and C.-W. Wu, “Testing content-addressable memories using functional fault models and march-like algorithms”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, no. 5 , pp. 577 – 588, May 2000.
[21] J. Zhao, S. Irrinki, M. Puri, and F. Lombardi, ”Testing sram-based content addressable memories ”, IEEE Trans. Computer, vol. 49, no. 10, pp. 1054 – 1063, Oct. 2000.
[22] P. R. Sidorowicz and J. A. Brzozowski, “A framework for testing special-purpose memories”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 21, no. 12 , pp. 1459 - 1468, Dec. 2002.
[23] D. Wright and M. Sachdev, “Transistor-level fault analysis and test algorithm development for ternary dynamic content addressable memories”, Proc. Int. Test Conference (ITC), Sept. 30-Oct. 2003, pp. 39 – 47.
[24] J.G. Delgado-Frias, A. Yu, and J. Nyathi, “A dynamic content addressable memory using a 4-transistor cell”, Proc. Int. Workshop on Design of Mixed-Mode Integrated Circuits and Applications, 26-28 July 1999, pp. 110 – 113.
[25] P. Lin and J. Kuo, “A 1-V 128-kb four-way set-associative CMOS cache memory using wordline-oriented tag-compare (WLOTC) structure with the content-addressable-memory (CAM) 10-transistor tag cell”, IEEE Journal of Solid-State Circuits, vol. 36, no. 4, pp.666-676, Apr. 2001.
[26] J.-F. Li, R.-S. Tzeng and C.-W. Wu, “Testing and diagnosis methodologies for embedded content addressable memories”, J. Electronic Testing: Theory and Application, vol.19, no.2, pp. 207-215, Apr. 2003. |