參考文獻 |
[1] W. Liu, H. F. Chau and E. Beam III, “Thermal properties and thermal instabilities of InP-based heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 43, no. 3, pp. 388-395, March. 1996.
[2] W. Liu, S. Nelson, D.G. Hill and A. Khatibzadeh, “Current gain collapse in microwave multifinger heterojunction bipolar transistors operated at very high power densities,” IEEE Trans. Electron Devices, vol. 40, no. 11, pp. 1917-1927, Nov. 1993.
[3] L.L. Liu, and B. Bayraktaroglu, “Thermal stability analysis of AlGaAs/GaAs heterojunction bipolar transistors with multiple emitter fingers,” IEEE Trans. Electron Devices, vol. 41, no. 5, pp. 629-636, May. 1994.
[4] K. Lu, and C.M. Snowden, “Analysis of thermal instability in multi-finger power AlGaAs/GaAs HBT's,” IEEE Trans. Electron Devices, vol. 43, no. 11, pp. 1799-1805, Nov. 1996.
[5] W. Liu, and A. Khatibzadeh, “The collapse of current gain in multi-finger heterojunction bipolar transistors: its substrate temperature dependence, instability criteria, and modeling,” IEEE Trans. Electron Devices, vol. 41, no. 10, pp. 1698-1707, Nov. 1994.
[6] Y. Zhu, J.K. Twynam, M. Yagura, M. Hasegawa, T. Hasegawa, Y. Eguchi, Y. Amano, E. Suematsu, K. Sakuno, N. Matsumoto, H. Sato and N. Hashizume, “Self-heating effect compensation in HBTs and its analysis and simulation,” IEEE Trans. Electron Devices, vol. 48, no. 11, pp. 2640-2646, Nov. 2001.
[7] S. Heckmann, R. Sommet, J.M. Nebus, J.C. Jacquet, D. Floriot, P. Auxemery and R. Quere, “Characterization and modeling of bias dependent breakdown and self-heating in GaInP/GaAs power HBT to improve high power amplifier design,” IEEE Trans. Microwave Theory and Tech., vol. 50, no. 12, pp. 2811-2819, Dec. 2002.
[8] K. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Phys. Rev., vol. 71, pp. 230, 1948.
[9] W. Shockley, “The theory of p-n junction in semiconductor and p-n junction transistor,” Bell syst. Tech. J. vol. 28, pp. 435, 1949.
[10] H. Kroemer, “Theory of a wide-gap emitter for transistors,” proc. IRE, vol. 45, no. 11, pp.1535-1537, Nov. 1957.
[11] S.S. Iyer, G.L. Patton, S.S. Delage, S. Tiwari and J.M.C. Stork, "Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy,” IEEE Int.Electron Devices Meet., pp. 874-876, 1987.
[12] J.H. Comfort, G.L. Patton, J.D. Cressler, W. Lee, E.F. Carbbe, B.S. Meyerson, J.Y.-C. Sun, J.M.C. Stork, P.F. Lu, J.N. Burghartz, J. Warnock, G. Scilla, K.Y. Toh, M. D'Agostino, C. Stanis and K. Jenkins, "Profile leverage in self-aligned epitaxial Si or SiGe base bipolar technology,” IEEE Int.Electron Devices Meet., pp. 21-24, 1990.
[13] E. Kasper, A. Gruhle and H, Kibbel, "High speed SiGe-HBT with very low base sheet resistivity,” IEEE Int.Electron Devices Meet., pp. 79-81, 1993.
[14] E.F. Carbbe, B.S. Meyerson, J.M.C. Stork, and D.L. Harame, "Vertical profile optimization of very high frequency epitaxial Si and SiGe-base bipolar transistors,” IEEE Int.Electron Devices Meet., pp. 83-86, 1993.
[15] A. Joseph, D. Coolbaugh, D. Harame, C. Freeman, S. Subbarma, M. Doherty, J. Bunn, C. Dickey, D. Greenberg, R. Groves, M. Meghelli, A. Rylyakov, M. Sorna, O. Schreiber, D. Herman and T. Tanji, "0.13 m 210GHz fT SiGe HBTs - expanding the horizons of SiGe BiCMOS,” IEEE Int.Solid-State Circ. Conf., pp. 180-182, 2002.
[16] J. D. Cressler and Guofu. Niu: Silicon-Germanium Heterojunction Bipolar Transistors (Artech House, Boston.London 2002).
[17] J. S. Rieh, D. Greenberg, Q. Liu, A.J. Joseph, G. Freeman and D.C. Ahlgren, “Structure optimization of trench-isolated SiGe HBTs for simultaneous improvements in thermal and electrical performances,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2744-2752, Dec 2005.
[18] R.H. Winkler, “Thermal properties of high-power transistors,” IEEE Trans. Electron Devices, vol. 14, no. 5, pp. 260-263, May. 1967.
[19] D.E. Dawson, A.K. Gupta and M.L. Salib, “CW measurement of HBT thermal resistance,” IEEE Trans. Electron Devices, vol. 39, no 10, pp. 2235-2239, Oct. 1992.
[20] G.B. Gao, M.Z. Wang, X. Gui and H. Morkoc, “Thermal design studies of high-power heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 36, no. 5, pp. 854 – 863, May 1989.
[21] C.W Kim, N. Goto and K. Honjo, “Thermal behavior depending on emitter finger and substrate configurations in power heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 45, no. 6, pp. 1190-1195, June 1998.
[22] D.J. Walkey, D. Celo, T.J. Smy and R.K. Surridge, “A thermal design methodology for multifinger bipolar transistor structures,” IEEE Trans. Electron Devices, vol. 49, no. 8, pp. 1375-1383, Aug. 2002.
[23] D.J. Walkey, T.J Smy, R.G. Dickson, J.S. Brodsky, D.T. Zweidinger and R.M. Fox, “Equivalent circuit modeling of static substrate thermal coupling using VCVS representation,” IEEE J. Solid-State Circuits, vol. 37, no. 9, pp. 1198-1206, Sep. 2002.
[24] J. B. Johnson, A.J. Joseph, D.C. Sheridan, R.M. Maladi, P.-O. Brandt, J. Persson, J. Andersson, A. Bjorneklett, U. Persson, F. Abasi and L. Tilly, “Silicon-germanium BiCMOS HBT technology for wireless power amplifier applications,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1605–1614 , Oct. 2004.
[25] J. Deng, P.S. Gudem, L.E. Larson and P.M. Asbeck, “A high average-efficiency SiGe HBT power amplifier for WCDMA handset applications,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 2, pp. 529-537, Feb. 2005.
[26] M. Racanelli and P. Kempf, “SiGe BiCMOS technology for RF circuit applications,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1259-1270, July. 2005.
[27] D.Y.C. Lie, J. Lopez and J.F. Rowland, “Highly efficient class E SiGe power amplifier design for wireless sensor network applications,” IEEE BCTM, pp. 160-163, 2007.
[28] F.P. Wang, D.F. Kimball, D.Y. Lie, P.M. Asbeck and L.E. Larson, “A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1271–1281 , June. 2007.
[29] U.R. Pfeiffer and D. Goren, “A 20 dBm fully-integrated 60 GHz SiGe power amplifier with automatic level control,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1455–1463 , July. 2007.
[30] K. Nellis and P.J. Zampardi, “A comparison of linear handset power amplifiers in different bipolar technologies,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1746–1754 , Oct. 2004.
[31] G. Wang, H-C. Yuan and Z. Ma,“Ultrahigh-performance 8-GHz Power HBT,” IEEE Electron Devices Letters, vol 27, no. 5, pp. 371-373, May. 2006.
[32] G-B. Gao, H. Morkoc and M.-C.F. Chang, “Heterojunction bipolar transistor design for power applications,” IEEE Trans. Electron Devices, vol. 39, no. 9, pp. 1987-1997, Sept. 1992.
[33] G. Wang, H.-C. Yuan and Z. Ma, “On the scaling of emitter stripes of SiGe power HBTs,” Semiconductor Science and Technology, vol. 22, pp. S84-S88, 2007.
[34] C-H. Lin, Y-K. Su, Y-Z. Juang, C-F. Chiu, S-J. Chang, J. F. Chen and C-H. Tu, “The optimized geometry of the SiGe HBT power cell for 802.11a WLAN applications,” IEEE Microwave and Wireless Components Letters, vol. l17, no. 1, pp. 49-51, Jan. 2007.
[35] W. Liu: Handbook of III-V Hetrojunction Bipolar Transistors (Wiley, New York, 1998) Chap. 8, p.632.
[36] C.P. Lee, F.H.F. Chau, W. Ma and N. L. Wang, “The safe operating area of GaAs-based heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 53, no. 11, pp. 2681-2688, Nov. 2006.
[37] K.D. Hobart, F.J. Kub, N.A. Papanicoloau, W. Kruppa and P.E. Thompson, “Si/Si1-xGex heterojunction bipolar transistors with high breakdown voltage,” IEEE Electron Devices Letters, vol. 16, no. 5, pp. 205-207, May. 1995.
[38] Z. Ma and N. Jiang, “On the operation configuration of SiGe HBTs based on power gain analysis,” IEEE Trans. Electron Devices, vol. 52, no. 2, pp. 248-255, Feb. 2005.
[39] A. S. Peng, K. M. Chen, G. W. Huang, M. H. Cho, S. C. Wang, Y. M. Deng, H. C. Tseng and T. L. Hsu, “Temperature effect on power characteristics of SiGe HBTs,” IEEE MTT-S Int. Microwave Symp. Digest, pp. 1955-1958, 2004.
[40] International Technology Roadmap for Semiconductors (ITRS), System Drivers (2003). p. 15. 2003 Edition. [Online]. Available: http://www.itrs.net/Links/2003ITRS/SysDrivers2003.pdf
[41] Z. Ma, S. Mohammadi, P. Bhattacharya, L. P. B. Katehi, S. A. Alterovitz and G. E. Ponchak, “A high-power and high-gain X-band Si/SiGe/Si heterojunction bipolar transistor,” IEEE Trans. Microwave Theory and Tech., vol. 50, no. 4, pp. 1101-1108, April. 2002.
[42] W. Liu: Handbook of III-V Hetrojunction Bipolar Transistors (Wiley, New York, 1998) Chap. 10, p.632.
[43] M. Versleijen, R. Dekker, v.d. Einde and A. Pruijmboom, “Low-voltage high-performance silicon RF power transistors,” IEEE MTT-S Int. Microwave Symp. Digest, pp. 563-566, 1995.
[44] K.D. Hobart, F.J. Kub, N.A. Papanicoloau, E.Kruppa and P.E. Thompson, “Si/Si1-xGex heterojunction bipolar transistors with high breakdown voltage,” IEEE Electron Devices Letters, vol. 16, no. 5, pp. 205-207, May. 1995.
[45] W. Liu: Handbook of III-V Hetrojunction Bipolar Transistors (Wiley, New York, 1998) Chap. 8, p.632.
[46] S. M. Sze: Modern Semiconductor Device Physics (Wiley, New York, 1998) Chap. 1, p.11.
[47] R. Sampathkumaran and K. P. Roenker, “Effects of self-heating on the microwave performance of SiGe HBTs,” Solid-State Electron, vol. 49, no. 8, pp. 1292-1296, August. 2005.
[48] G.-B. Gao, H. Morkoc and M.-C.F. Chang, “Heterojunction bipolar transistor design for power applications,” IEEE Trans. Electron Devices, vol. 39, no. 9, pp. 1987-1997, Sept. 1992.
[49] F. van Rijs, R. Dekker, H. A. Visser, H. G. A. Huizing, D. Hartskeerl, P. H. C. Magnee and R. Dondero, “Influence of output impedance on power added efficiency of Si-bipolar power transistors,” IEEE MTT-S Int. Microwave Symp. Digest, pp. 1945-1948, 2000.
[50] M. Iwamoto, C.P. Hutchinson, J.B. Scott, T.S. Low, M. Vaidyanathan, P.M. Asbeck and D.C. D'Avanzo “Optimum bias conditions for linear broad-band InGaP/GaAs HBT power amplifiers,” IEEE Trans. Microwave Theory and Tech., vol. 50, no. 12, pp. 2954-2962, Dec. 2002.
[51] A. Schuppen, S. Gerlach, H. Dietrich, D. Wandrei, U. Seiler and U. Konig S, “1-W SiGe power HBTs for mobile communication,” IEEE Microwave and Wireless Components Letters, vol. 6, no. 9, pp. 341-343, Sept. 1996.
[52] J. N. Burghartz, J. O. Plouchart, K. A. Jenkins, C. S. Webster and M. Soyuer, “SiGe power HBT's for low-voltage, high-performance RF application,” IEEE Electron Devices Letters, vol. 19, no. 4, pp. 103-105, April. 1998.
[53] X. Zhang, C. Saycocie, S. Munro and G. Henderson, “A SiGe HBT power amplifier with 40% PAE for PCS CDMA applications,” IEEE MTT-S Int. Microwave Symp. Digest, pp. 857-860, 2000.
[54] J. B. Johnson, A. J. Joseph, D. Sheridan and R. M. Malladi, “SiGe BiCMOS technologies for power amplifier applications,” GaAs IC Symp, pp. 179-182, 2003.
[55] N. Jiang, Z. Ma, G. Wang, P. Ma, and M. Racanelli,“3-W SiGe power HBTs for wireless applications,” Elsevier Sci.: Mater. Sci. Semicond. Process., vol 8, no. 1-3, pp. 323-326, 2005.
[56] K. Yamauchi, K. Mori, M. Nakayama, Y. Itoh, Y. Mitsui and O. Ishida, “A novel series diode linearizer for mobile radio power amplifiers,” IEEE MTT-S Int. Microwave Symp. Digest, pp. 831-834, 1996.
[57] T. Yoshimasa, M. Akagi, N. Tanba and S. Hara, “An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications,” IEEE J. Solid-State Circuits, vol. 33, no. 9, pp. 1290–1296, Sept. 1998.
[58] Y.S. Noh and C-S. Park, “PCS/W-WCDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit,” IEEE J. Solid-State Circuits, vol. 37, no. 9, pp. 1096–1099, Sept. 2002.
[59] J. Cha, Y. Yang, B. Shin and B. Kim, “An adaptive bias controlled power amplifier with a load-modulated combining scheme for high efficiency and linearity,” IEEE MTT-S Int. Microwave Symp. Digest, pp. 81-84, 2003.
[60] J.H. Kim, Y.S. Noh and C.S. Park, “MMIC power amplifier adaptively linearized with RF coupled active bias circuit for W-CDMA mobile terminals applications,” IEEE MTT-S Int. Microwave Symp. Digest, pp. 2209-2212, 2003.
[61] K.C. Lin, T.Y. Yang, K.Y. Chen and H.K. Chiou, “High efficiency open collector adaptive bias SiGe HBT differential power amplifier,” IEICE Trans Electron, pp. 1704-1707, 2006.
[62] M. Pfost, P. Brenner, T. Huttner and A. Romanyuk, “An experimental study on substrate coupling in Bipolar/BiCMOS technologies,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1755–1763, Oct. 2004.
[63] K.H. To, P. Welch, S. Bharatan, H. Lehning, T.L. Huynh, R. Thoma, D. Monk, W.A. Huang and V. Ilderem, “Comprehensive study of substrate noise isolation for mixed-signal circuits,” IEEE Int.Electron Devices Meet., pp. 22.7.1-22.7.4, 2001.
[64] G.A. Rezvani and Jon Tao, “Substrate isolation in 0.18 m CMOS technology,” IEEE International Conference on Microelectronic Test Structures, pp. 131–136, April. 2005.
[65] D. Kosaka, M. Nagata, Y. Hiraoka, I. Imanishi, M. Maeda, Y. Murasaka and A. Iwata,“ Isolation strategy against substrate coupling in CMOS mixed-signal/RF circuits,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 276–279, June. 2005.
[66] Wen-Kuan Yeh; Shuo-Mao Chen and Yean-Kuen Fang, “Substrate noise-coupling characterization and efficient suppression in CMOS technology,”
IEEE Trans. Electron Devices, vol. 51, no. 5, pp. 817-819, May. 2004. |