參考文獻 |
[1] B.A. Biegel et al, “Simulation of ultra-small MOSFETs using a 2-D quantum-corrected driftdiffusion model,” 35th Annual Technical meeting of Society of Engineering Science, Pullman, Washington, September, pp. 53-64, 1998.
[2] M. G. Ancona et al, “Simulation of quantum confinement effects in ultra-thin oxide MOS structures,” IEEE Trans. Computer-Aided Design, 1998. [Online: http://tcad.stanford.edu/tcad-journal/archive].
[3] B. A. Biegel, C. S. Rafferty, M. G. Ancona, and Z. Yu, “Efficient multi-. dimensional simulation of quantum confinement effects in advanced. MOS devices,” IEEE Trans. Electron Devices, to be published.
[4] R. Lake, G. Klimeck, R. C. Bowen and D. Jovanovic, "Single and Multi-Band Modeling of Quantum Electron Transport through Layered Semiconductor Devices," J. of Appl. Phys., vol. 81, p. 7845, 1997.
[5] B. A. Biegel, J.D. Plummer, “Comparison of self-consistency iteration options for the Wigner function method of quantum device simulation,” Phys. Rev. B, vol. 54, p. 8070, 1996.
[6] R. K. Mains, and G. I. Haddad, “An Accurate Re-formulation of the Wigner Function Method for Quantum Transport Modeling,” Journal of Computational Physics, vol. 112, pp.149-161, 1994.
[7] F. Stern, “Self-consistent results for n-type Si inversion layers,” Phys. Rev. B, vol. 5, pp. 4891-4899, 1972.
[8] S. J. Li, C. C. Chang, and Y. T. Tsai, “Simulation of Si n-MOS inversion layer with Schrodinger-Poisson equivalent circuit model,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 19, pp.229–238, 2006.
[9] S. J. Li, C. H. Ho, and Y. T. Tsai, “Kronig-Penney Model Simulation with Equivalent Circuit Method,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 20, pp.109–116, 2006.
[10] J.-R. Zhou and D. K. Ferry, “Ballistic phenomena in GaAs MESFETs: Modeling with quantum moment equations,” Semicond. Sci. Technol., vol. 7, pp. B546–B548, 1992.
[11] H. L. Grubin, T. R. Govindan, J. P. Kreskovsky, and M. A. Stroscio, “Transport via the Liouville equation and moments of quantum distribution functions,” Solid-State Electron., vol. 36, pp. 1697–1709, 1993.
[12] S. J. Li, C. H. Ho, C. N. Liao, and Y. T. Tsai, “Log-scale method with equivalent circuit model in semiconductor device simulations,” to be appeared in Journal of the Chinese Institute of Engineers.
[13] M. J. Van Dort, P. H. Woerlee, and A. J. Walker, “A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions,” Solid-State Electronics, vol. 37, pp.411-414, 1994.
[14] C. Takano, Z. Yu, and R. W. Dutton, “A nonequilibrium one-dimensional quantum-mechanical simulation for AlGaAs/GaAs HEMT structures,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 9, pp.1217-1224, 1990.
[15] S. J. Li, J. F. Dai, C. C. Chang, and Y. T. Tsai, “Quantum effects in Si n-MOS inversion layer with simple numerical method,” Proc Electron Devices and Materials Symposium (EDMS), pp. 662-665, 2003.
[16] K. A. Remley, and A. Weisshar, “A versatile impedance boundary method of moments computational technique for solving the one-dimensional Schrodinger equation with application to quantum well and quantum wire problems,” IEEE Journal of Quantum Electronics, vol. 34, pp.1171–1179, 1998.
[17] G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field,” Phys. Rev. B, vol. 28, pp. 3241-3245, 1983.
[18] J. Singh, “A new method for solving the ground-state problem in arbitrary quantum wells: Application to electron-hole quasi-bound levels in quantum wells under high electric field.” Appl. Phys. Lett., vol. 28, pp. 434-436, 1986.
[19] A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “A novel numerical technique for solving the one-dimensional Schroedinger equation using matrix approach-application to quantum well structures,” IEEE Journal of Quantum Electronics, vol. 24, pp.1524–1531, 1988.
[20] W. Shockley, Electrons and Holes in Semiconductors, With Applications to Transistor Electronics, New York: Van Nostrand, 1950.
[21] S. Selberherr, Analysis and Simulation of Semiconductor Devices, New York: Springer-Verlag, 1984.
[22] J. Vlach, and K. Singhal, Computer Methods for Circuit Analysis and Design, New York: Van Nostrand Reinhold, 1994.
[23] C. L. Teng, An Equivalent Circuit Approach to Mixed-Level Device and Circuit Simulation, M. S. Thesis, Institute of EE, National Central University, Taiwan, R.O.C., 1997.
[24] D. A. Neamen, Semiconductor Physics And Devices, McGraw-Hill, 2002.
[25] J. Wang, J. P. Leburton, and J. E. Zucker, “Modeling of the optical properties of a barrier, reservoir, and quantum-well electron transfer structure,” IEEE Journal of Quantum Electronics, vol. 30, pp.989-996, 1994.
[26] A. S. Spinelli, A. Benvenuti, and A. Pacelli, “Self-consistent 2-D model for quantum effects in n-MOS transistors,” IEEE Transactions on Electron Devices, Vol. 45, pp. 1342-1349, 1998.
[27] A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, “Iteration scheme for the solution of the two-dimensional Schrodinger-Poisson equations in quantum structures,” Journal of Applied Physics, vol. 81, pp.7880-7884, 1997.
[28] J. F. Dai, C. C. Chang, S. J. Li, and Y. T. Tsai, “Further improvements in equivalent-circuit model with Levelized incomplete LU factorization for mixed-level semiconductor device and circuit simulation,” Solid-State Electronics, vol. 48, pp. 1181-1188, 2004.
[29] T. Janik and B. Majkusiak, “Analysis of the MOS Transistor Based on the Self-Consistent Solution to the Schrodinger and Poisson Equations and on the Local Mobility Model,” IEEE Transactions on Electron Device, vol. 45, pp.1263-1271, 1998.
[30] G. Fiori, and G.. Iannaccone, “Effects of quantum confinement and discrete dopants in nanoscale bulk-Si nMOSFET,” IEEE-NANO, pp. 248-253, 2001.
[31] J. F. Dai, C. C. Chang, S. J. Li, and Y. T. Tsai, “Simplified equivalent-circuit modeling for decoupled and partial decoupled methods in semiconductor device simulation,” International Journal of Numerical Modelling, Electronic Networks, Devices, and Fields, vol. 17, pp. 421-432, 2004.
[32] C. H. Kuo, An Equivalent Circuit Model of Quantum Mechanics and its Investigation to Device Simulation, M. S. Thesis, Institute of EE, National Central University, Taiwan, R.O.C, 2004.
[33] A. Abramo, A. Cardin, L. Selmi, and E. Sangiorgi, “Two-Dimensional Quantum Mechanical Simulation of Charge Distribution in Silicon MOSFETs,” IEEE Transactions on Electron Device, vol. 47, pp.1858-1863, 2000.
[34] R. D. Kronig, and W. G.. Penney, “Quantum Mechanics of Electrons in Crystal Lattices,” Proc. of the Royal Society London, vol. 130, pp. 499-513, 1931.
[35] S. Mishra, and S. Satpathy, “Kronig-Penny model with the tail-cancellation method,” American Journal of Physics, vol. 69, pp. 512-513, 2001.
[36] S. P. Day, H. Zhou, and D. L. Pulfrey, “The Kronig-Penney Appmximation: May It Live On,” IEEE Transcations on Education, vol. 33, pp. 355-358, 1990.
[37] H. S. Cho, and P. R.Prucnal, “New formalism of the Kronig-Penny model with application to superlattices,” Physical Review B, vol. 36, pp. 3237-3242, 1987.
[38] A. Nussbaum, “Extensions to the Kronig-Penney model,” IEEE Transcations on Education, vol. 33, pp. 359, 1990.
[39] F. Szmulowicz, “Kronig-Penny model: a new solution,” European Journal of Physics. vol.18, pp. 392-397, 1997.
[40] S. Singh, “Kronig-Penny model in reciprocal lattice space,” American Journal of Physics. vol. 51, pp. 179, 1983.
[41] A. Harwit, J. S. Harris, “Calculated quasi-eigenstates and quasi-eigenenergies of quantum well superlattices in an applied electric field,” American Journal of Physics, vol. 60, pp. 3211-3213, 1986.
[42] N. O.Folland, “Energy bands and forbidden gaps in the kronig-penny model,” Physical Review B. Vol. 28, pp. 6068-6071, 1983.
[43] H. Kroemer, Quantum mechanics: For engineering, materials science, and applied physics, Prentice-Hall, New York, 1994.
[44] G. Yangn, S. Wang, and R. Wang, “An efficient preconditioning technique for numerical simulation of hydrodynamic model semiconductor devices,” International Journal for Numerical Methods in Engineering, vol. 16, pp. 387–400, 2003.
[45] H. Abebe, and E. Cumberbatch, “Quantum Mechanical Effects Correction Models for Inversion Charge and Current-Voltage (I-V) Characteristics of the MOSFET Device,” Nanotech 2003, pp. 218-221, 2003.
[46] J. W. Slotboom, “Computer-Aided Two-Dimensional Analysis of Bipolar Transistors,” IEEE Trans. Electron Devices, vol. 20, no. 8, pp. 669-679, 1973.
[47] F. Yamamoto, and S. Takahashi, “Vectorized LU Decomposition Algorithms for Large-Scale Circuit Simulation,” IEEE Trans. Computer-Aided Design, vol .4, pp. 232-239, 1985.
[48] K. Mayaram, and D. O. Pederson, “Coupling algorithms for mixed-level circuit and device simulation,” IEEE Trans. Computer-Aided Design, vol. 11, pp.1003-1012 , 1992.
[49] R. S. Varga, Matrix Iterative Analysis, Springer Verlag, New York, 2000.
[50] J. F. Dai, “Development of 2-D and 3-D Numerical Device Simulator including an Improved L-ILU Solver and the Circuit representation of PDM,” Ph.D. dissertation, National Central University, Taiwan, 2004.
[51] J. P. Chang, “Numerical method of the Quantum Drift Diffusion in Semiconductor,” M. S. Thesis, Graduate Institute of Mathematics, National Taiwan University, Taiwan, R.O.C., 2005.
[52] F. Brezzi, I. Gasser, P. A. Markowich, and C. Schmeiser, “Thermal Equilibrium States of the Quantum Hydrodynamic Model for Semiconductors in One Dimension,” Applied Mathematics Letters, vol. 8, pp. 47-52, 1995.
[53] A. Wettstein, A. Schenk, and W. Fichtner, “Quantum Device-Simulation with the Density-Gradient Model on Unstructured Grids,” IEEE Transactions on Electron Devices, Vol. 48, pp. 279–284, 2001.
[54] H. K. Gummel, “A self-consistent iterative scheme for one-dimensional steady state transistor calculations,” IEEE Transactions on Electron Devices, pp.455-465, 1964.
[55] M. G. Ancona and H. F. Tiersten, “Macroscopic physics of the silicon inversion layer,” Phys. Rev. B, vol. 35, no. 15, pp. 7959–7965, 1987.
[56] M. G. Ancona and G. J. Iafrate, “Quantum correction to the equation of sate of an electron gass in a semicunductor,” Phys. Rev. B, vol. 39, no. 13, pp. 9536-9540, 1989.
[57] C. L. Gardner, “The quantum hydrodynamic model for semiconductor devices,” SIAM J. Appl. Math., vol. 54, no. 2, pp. 409-427, 1994.
[58] C. S. Rafferty, Z. Yu, B. Biegel, M. G. Ancona, J. Bude, and R. W. Dutton, “Multi-dimensional quantum effect simulation using a density-gradient model and script-level programming techniques,” SISPAD ’98, Lueven, Belgium, p. 137, Sept. 1998.
[59] F. M′ehats, “A Quantum Drift-Diffusion model derived from an entropy principle,” SEMIC 2005, Milano, February, pp.17-18, 2005.
[60] C. D. Falco et al., “Quantum-corrected drift-diffusion models for transport in semiconductor devices,” Journal of Computational Physics, vol. 22, pp.533-561, 2005.
[61] M. J. van Dort, P. H. Woerlee, and A. J. Walker, “A simple model for quantization effects in heavily-doped silicon MOSFETs at inversion conditions,” Solid-State Electron, no. 3, pp. 411-414, 1994.
[62] D. Connelly, et al., “Macroscopic Simulation of Quantum Mechanical Effects in 2-D MOS Devices via the Density Gradient Method,” IEEE Transaction on Electron Devices, p. 619, Apr. 2002.
[63] S. J. Li, J. F. Dai, C. C. Chang, C. H. Huang, Y. T. Tsai, “Development of 3-D equivalent-circuit modeling with decoupled L-ILU factorization in semiconductor device simulation,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 20, pp.133–148, 2006.
[64] M. G. Ancona, D. Yergeau, Z. Yu, B. A. Biegel, “On Ohmic Boundary Conditions for Density-Gradient Theory,” Journal of Computational Electronics, vol. 1, pp. 103-107, 2002.
[65] A. Jungel, and R. Pinnau, “Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems,” Society for Industrial and Applied Mathematics, vol. 32, pp. 760-777, 2000.
[66] R. Pinnau, and A. Unterreiter, “The Stationary Current-Voltage Characteristics of the Quantum Drift-Diffusion Model,” Society for Industrial and Applied Mathematics, vol. 37, pp. 221-245, 1999.
[67] R. Pinnau, “A note on boundary conditions for quantum hydrodynamic models,” Applied Mathematics Letters, vol. 12, pp. 77-82, 1999.
[68] R. Pinnau, “Numerical approximation of the transient quantum drift-diffusion model,” Preprint submitted to Elsevier Preprint, 2000. |