博碩士論文 92521016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.119.133.206
姓名 廖仁傑(Jen-Chieh Liao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 互補式金氧半導體之射頻功率放大器及數位電視前端寬頻低雜訊放大器設計
(Design of CMOS Power Amplifiers and Wide-Band Low Noise Amplifier for DVB-T Front-End)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,接收系統中的數位電路及基頻電路部份已進入SoC時代,而CMOS具有低成本及高整合度兩大特性,提高了射頻前端電路邁向SoC的可能性,因此CMOS製程在射頻前端電路應用上的需求便大量的提昇。功率放大器在射頻前端電路中佔有相當重要的地位,在一個無線系統中,高效率的功率放大器是很吸引人的,因為射頻前端電路最主要的功率消耗來源就是功率放大器。近年來在無線通訊市場上的可攜式產品,除了收發良好的基本功能外,產品的待機時間已是重要的考量之一,因此在射頻收發機中最佔耗電量的功率放大器其功率增加效率要越高越好以降低熱損耗,減少能量消耗並因此提高電晶體的可靠度。
目前我國數位電視仍未全面普及,在未來幾年,數位電視將會漸漸取代現今的類比電視。射頻接收機處理天線接收後的訊號,也就是說射頻接收機是處理數位電視訊號的第一道關卡。要建立全面的數位電視時代,除了發送信號平台的建立,接收設備也是相當重要的一環,因此數位電視訊號接收端的電路便顯得格外重要。
本論文主要研究內容為應用在無線區域網路的射頻功率放大器設計,以及應用在數位地面電視射頻前端的低雜訊放大器設計。論文中電路皆以台積電0.18微米互補式金氧半導體製程。
功率放大器部份,2.4GHz A類功率放大器功率增益為8.8dB、輸出1-dB壓縮點為19.8dBm、功率增加效率為12.8%而輸入三階截斷點為25dBm 。2.4GHz 可調輸出功率之功率放大器量測結果發現頻率漂移至1.2GHz ,在1.2GHz量測結果為:高輸出功率模式下,功率增益為7.4dB、輸出1-dB壓縮點為19.5dBm、功率增加效率為17.9%而輸入三階截斷點為21dBm; 低輸出功率模式下,功率增益為7.3dB、輸出1-dB壓縮點為12.3dBm、功率增加效率為4.3%而輸入三階截斷點為22dBm。利用二極體偏壓電路的2.4GHz高功率增加效率功率放大器之頻率漂移至2.7GHz,在2.7GHz的功率增益為10.6dB、輸出1-dB壓縮點為19.6dBm、功率增加效率為17.5%而輸入三階截斷點為23dBm。 寬頻低雜訊放大器在操作頻帶內增益大於7.4dB、雜訊指數低於4.3dB、輸入三階截斷點大於11dBm而輸入二階截斷點大於34dBm。
摘要(英) In recent years, digital circuits and baseband circuits in the receiver have entered the age of SoC (System-on-a-Chip). Owing to the characteristics of low cost and high integration, submicron CMOS technology provides a probability of SoC implementation for RF front-end. Thus, the submicron CMOS processes are of great demand for RF front-end. Power amplifiers are the important component in the RF Front-End. In a wireless system, a high efficiency power amplifier is attractive because it is the main source of power dissipation in the RF front-end. In these years, not only the capability to receive and transmit signals, but also time for stand by of the portable products in wireless communication have been taken into seriously account. To decrease the loss of heat, the power added efficiency (PAE) is the higher, the better. As the loss of energy decreases, the reliability of the transistors rises.
The Digital Terrestrial TV is not popular so far. However, digital TV will gradually replace analog TV in the coming years. The RF receiver deals with the signal received by antenna, that is, the RF receiver firstly handles the signal of digital TV. Besides the stations for transmission, the equipments for receiving signal are also important. Thus the circuits of digital TV receiver are quite significant.
The main researches in this thesis are the RF power amplifiers for WLAN applications and a wide-band low noise amplifier for DVB-T RF front-end receiver. The circuits in this thesis are implemented in tsmc 0.18um CMOS process.
In the section of PAs, measured linear gain of the 2.4GHz class A power amplifier is 8.8dB with output 1-dB compression point (P1dB) of 19.8dBm, and the measured power added efficiency (PAE) at P1dB is 12.8% with the input third interception point (IIP3) of 25dBm. The power amplifier with switched output power is originally designed for 2.4GHz applications but the operation frequency is turned into 1.2GHz after measurement. The measured linear gain is 7.4dB with output P1dB of 19.5dBm, and the measured PAE at P1dB is 17.9% with IIP3 of 21dBm for high output power mode; For low output power mode, linear gain is 7.3dB with output P1dB of 12.3dBm and PAE at P1dB is 4.3% with IIP3 of 22dBm. The measured results of high PAE power amplifier with a diode bias circuit are as follows: Operation frequency of 2.7GHz with power gain of 10.6dB. The output P1dB is 19.6dBm, and the measured PAE at P1dB is 17.5% with IIP3 of 23dBm. The wide-band low noise amplifier achieves at least gain of 7.4dB with noise figure lower than 4.3dB, and IIP3 is higher than 11dBm with the second input interception point (IIP2) higher than 34dBm.
關鍵字(中) ★ 功率放大器
★ 低雜訊放大器
★ 數位電視前端
關鍵字(英) ★ Low noise amplifier
★ DVB-T Front-end
★ Power amplifier
論文目次 Chapter 1 1
Introduction 1
1-1 Motivation 1
1-2 Results 1
1-3 Thesis Organization 2
Chapter 2 3
Overview of CMOS Power Amplifiers 3
2-1 Introduction 3
2-2 General Considerations 4
2-2-1 Gain Match and Power Match 4
2-2-2 Design issues 5
2-3 Classification of Power Amplifiers 6
2-3-1 Class A, B, AB, and C Power Amplifiers 6
2-3-2 Class E Power Amplifier 9
2-3-3 Summary of Classified Power Amplifiers 15
Chapter 3 16
Design of CMOS Power Amplifiers 16
3-1 Introduction to WLAN of 802.11 16
3-2 2.4GHz Class A Power Amplifier 17
3-2-1 Introduction 17
3-2-2 Methodology 18
3-2-3 Simulation and Measurement Results 19
3-2-4 Conclusion and Discussion 26
3-3 Fully Differential Power Amplifier with Switched Output Power 28
3-3-1 Introduction 28
3-3-2 Methodology 28
3-3-3 Simulation and Measurement Results 31
3-3-4 Conclusion and Discussion 42
3-4 High PAE Power Amplifier with a Diode Bias Circuit 47
3-4-1 Introduction 47
3-4-2 Methodology 49
3-4-3 Simulation and Measurement Results 52
3-4-4 Conclusion and Discussion 59
Chapter 4 61
Wide-Band LNA for DVB-T RF Front-End Receiver 61
4-1 Development of Digital TV 61
4-2 Considerations of the Digital Terrestrial TV receiver 63
4-3 Specifications of Digital Terrestrial TV in Taiwan 67
4-4 Design of Wide-Band Low Noise Amplifier 71
4-4-1 Introduction 71
4-4-2 Methodology 72
4-4-3 Simulation and Measurement Results 74
4-4-4 Conclusion and Discussion 87
Chapter5 90
Conclusion and Future Work 90
References 92
Appendix 94
Fully Differential Class E Power Amplifier 94
參考文獻 [2] S. C. Cripps, “RF Power Amplifiers for Wireless Communications” Artech House, 1999.
[3] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits”, Cambridge University Press, 1998.
[4] T. Sowlati and D. M. W. Leenaerts, “A 2.4GHz 0.18um CMOS Self-Biased Cascode Power Amplifier”, IEEE Journal of Solid-State Circuits, vol.38, No.8, August 2003.
[5] C. C. Chu, “Design and Implementation of High-Efficiency 2.4GHz Class-E Power Amplifier MMICs and Modules”, Master Thesis, Department of Electrical Engineering, National Sun Yat-Sen University, July, 2003
[6] D. Y. C. Lie, P. Lee, J. D. Popp, J. F. Rowland, H. H. Ng and A. H. Yang, “The Limitations in Applying Analytic Design Equations for Optimal Class E RF Power Amplifier Design”, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA
[7] W.C. Liu, “Implementation of RF Transceiver Front-End Circuits for ISM and Ka Band Applications”, Master Thesis, Department of Communication Engineering, National Central University, June, 2004
[8] B. Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill International Editoon, 2001
[9] C. C. Yen and H. R. Chuang, “A 0.25um 20-dBm 2.4GHz CMOS Power Amplifier with an Integrated Diode Linearizer”, IEEE Microwave and Wireless Components Letters, vol.13. No. 2, February 2003
[10] Y. Ding and R. Harjani, “A CMOS High Efficiency +22dBm Linear Power Amplifier,” IEEE 2004 Custom Integrated Circuits Conference, pp.557-560, 2004.
[11] C. Wang, L. E. Larson and P. M. Asbeck, “A Nonlinear Capacitance Cancellation Technique and its Application to a CMOS Class AB Power Amplifier”, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp.39-42, 2001.
[12] 賴伯洲,林志星,魏明照,林世欽等編著;數位電視廣播與製作系統,全華科技圖書股份有限公司印行,民國91年
[13] John Norsworthy, Chief Technical Officer, Microtune, INC. Technical Backgrounder: “Tuners Serving Today’s High-Performance Broadband Applications Require Careful Attention To Key Performance Parameters”
[14] B. Razavi, “RF Microelectronics”, Prentice Hall, 1997
[15] 兆赫電子股份有限公司,ZDT-410HD DVB-T/HDTV Digital Terrestrial Receiver
[16] 泰山電子股份有限公司,數位地面接收機上盒,SE830-T
[17] 廣訊科技股份有限公司,數位電視機上盒,P-8000T
[18] 曹恆偉,李學智,陳銘憲,曾宏儒;數位電視無線資訊廣播平台之規劃及行動功能之研究, 執行單位:台灣大學電信中心; 委託機關:交通部, 民國91年12月31日
[19] John Norsworthy, Founder and Technical Officer, Microtune, INC. Technical Backgrounder: Single Chip Broadband Tuner
[20] Maxim Integrated Products, “MAX3558”: Quad-Output LNA with AGC for Cable TV Applications
[21] F. Bruccoleri, E. A. M. Klumperink and B. Nauta, “Generating All Two-MOS-Transistor Amplifiers Leads to New Wide-Band LNAs” , IEEE Journal of Solid-State Circuits, vol.36, No.7, July 2001
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明