參考文獻 |
[1] “The International Technology Roadmap for Semiconductors,” Semiconductor Industries Association, 2008.
[2] H. Yoshimura et al., “A CMOS technolgy platform for 0.13μm generator SoC (system on a chip),” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2000, pp. 144–145.
[3] T. Yamamoto, S.-I. Gotoh, T. Takahashi; K. Irie, K. Ohshima, and N. Mimura, “A mixed-signal 0.18-μm CMOS SoC for DVD systems with 432-MSample/s PRML read channel and 16-Mb embedded DRAM,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1785–1794, Nov. 2001.
[4] J.-M. Ingino and V.R. Von Kaenel, “A 4-GHz clock system for a high-performance system-on-a-chip design,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1693–1698, Nov. 2001.
[5] K.J. Nowka, et al., “A 32-bit PowerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1441–1447, Nov. 2002.
[6] Y.K. Hong et al., “130 nm-technology, 0.25-μm2, 1T1C FRAM cell for SoC (system-on-a-chip)-friendly applications,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2007, pp. 230–231.
[7] M. Ito et al., “An 8640 MIPS SoC with independent power-off control of 8 CPUs and 8 RAMs by an automatic parallelizing compiler,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Paper, 2008, pp. 90–598.
[8] T. Xanthopoulos et al., “The design and analysis of the clock distribution network for a 1.2GHz Alpha microprocessor,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Paper, 2001, pp. 402–403.
[9] Frank P. O’Mahony, “10 GHz global clock distribution using coupled standing-wave oscillators,” Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Cambridge, MA, 2003.
[10] M. Afghahi and J. Yuan, “Double edge-triggered D-flip-flops for high speed CMOS circuits,” IEEE J. Solid-State Circuits, vol. 26, no. 8, pp. 1168–1170, Aug. 1991.
[11] A. Hurst and R. Brayton, “The advantages of latch-based design under process variation,” Int. Workshop Logic & Synthesis, IWLS, 2006, pp. 241–246.
[12] T. Saeki et. al., “A 2.5-ns clock access, 250-MHz, 256-Mb, SDRAM with synchronous mirror delay,” IEEE J. Solid-State Circuites, vol. 31, no. 11, pp. 1656–1668, Nov. 1996.
[13] M. Meghelli et al., “50-Gb/s SiGe BiCMOS 4:1 multiplexer and 1:4 demultiplexer for serial communication system,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1790–1794, Dec. 2002.
[14] S. Kozu et al., “100MHz, 0.4W RISC processor with 200MHz multiply adder, using pulse-register technique,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Paper, 1996, pp. 140–141.
[15] J.-S. Wang, P.-H. Yang, and D. Sheng, “Design of a 3V 300MHz low-power 8-b x 8-b pipeline multiplier using pulse-trigger TSPC flip-flop,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 583–592, Apr. 2000.
[16] B. Razavi, Monolithic phase-locked loops and clock recovery circuits: theory and design, IEEE Press, 1996.
[17] R. E. best, Phase-locked loop: theory, and design application, New York: McGraw-Hill, 1998.
[18] F. M. Gardner, Phaselock techniques, Wiley-Interscience, third edition, 2005.
[19] D. J. Foley and M. P. Flynn, “CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock synthesizer and temperature-compensated tunable oscillator,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 417–423, Mar. 2001.
[20] J. Lee and B. Kim, “A low-noise fast-lock phase-locked loop with adaptive bandwidth contorl,” IEEE J. Solid-State Circuites, vol. 35, no. 8, pp. 1137–1145 Aug. 2000.
[21] K. Nakamura, M. Fukaishi, Y. Hirota, Y. Nakazawa, and M. Yotsuyanagi, “A CMOS 50% duty cycle repeater using complementary phase blending,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2000, pp. 48–49, Jun. 2000.
[22] T. Ogawa and K. Taniguchi, “A 50% duty-cycle correction circuit for PLL output,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 2002, pp. 21–24.
[23] Y. Moon, J, Choi, K. Lee, D.-K Jeong, and M. K. Kim, “An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 377–384, Mar. 2000.
[24] F. Mu and C. Svensson, “Pulsewidth control loop in high-speed CMOS clock buffers,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 134-141, Feb. 2000.
[25] Y.-J. Jung, S.-W. Lee, D. Shim, W. Kim, C.-H. Kim, and S.-I. Cho, “A low jitter dual loop DLL using multiple VCDLs with a duty cycle corrector,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2000, pp. 50–51.
[26] Y.-J. Jung, S.-W. Lee, D. Shim, W. Kim, C. Kim, and S.-I. Cho, “A dual-loop delay-locked loop using multiple voltage-controlled delay lines,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 784–791, May 2001.
[27] Y.C. Jang, S.J. Bae, and H.J. Park, “CMOS digital duty cycle correction circuit for multi-phase clock,” IEE Electron. Lett., vol. 39, no. 19, pp. 1383–1384, Sept. 2003.
[28] C. Jeong, C. Yoo, J.-J. Lee, and J. Kih, “Digital delay locked loop with open-loop digital duty cycle corrector for 1.2Gb/s/pin double data rate SDRAM,” in Proc. IEEE European Solid-State Circuits Conf. (ESSCIRC), 2004, pp. 379–384.
[29] K.-H. Kim et al., “A 1.4 Gb/s DLL using 2nd order charge-pump scheme with low phase/duty error for high-speed DRAM application,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Paper, 2004, pp. 212–523.
[30] Y.-M. Wang and J.-S. Wang, “An all-digital 50% duty-cycle corrector,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 2004, pp. 925–928.
[31] P.-H. Yang and J.-S. Wang, “Low-voltage pulsewidth control loops for SOC applications,” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1348–1351, Oct. 2002.
[32] S.-R. Han and S.-I. Liu, “A 500-MHz-1.25-GHz fast-locking pulsewidth control loop with presettable duty cycle,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 463–468, Mar. 2004.
[33] W.-M. Lin and H.-Y. Huang, “A low-jitter mutual-correlated pulsewidth control loop circuit,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1366–1369, Aug. 2004.
[34] S.-R. Han and S.-I. Liu, “A single-path pulsewidth control loop with a built-in delay-locked loop,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1130–1135, May 2005.
[35] Y.-J. Wang, S.-K. Kao, S.-I. Liu, “All-digital delay-locked loop/pulsewidth control loop with adjustable duty cycles,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1262–1274, June 2006.
[36] C.-C. Chung and C.-Y. Lee, “A new DLL-based approach for all-digital multiphase clock generation,” IEEE J. Solid-State Circuits, vol. 39, pp. 469–475, Mar. 2004.
[37] B. Razavi, Design of Analog CMOS Integrated Circuits. New York. McGraw-Hill, 2001.
[38] J.S. Humble, P.J. Zabinski, B.K. Gilbert, and E.S. Daniel, “A clock duty-cycle correction and adjustment,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Paper, 2006, pp. 2132–2141.
[39] T. Saeki, H. Nakamura, and J. Shimizu, “A 10ps jitter 2 clock cycle lock time CMOS digital clock generator based on an interleaved synchronous mirror delay scheme,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 1997, pp. 109–110.
[40] T. Saeki, K. Minami, H. Yoshida, and H.Suzuki, “A direct-skew-detect synchronous mirror delay for application-specific integrated circuits,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 372–379, Mar. 1999.
[41] C.-H. Sun and S.-I. Liu, “A mixed-mode synchronous mirror delay insensitive to supply and load variations,” J. of Analog Integrated Circuits and Signal Processings, vol. 39, pp. 75–80, Apr. 2004.
[42] K. Sung, B.-D. Yang and L.-S. Kim, “Low power clock generator based on area-reduced interleaved synchronous mirror delay,” IEE Electron. Lett., vol. 38, no. 9, pp. 399–400, Apr. 2002.
[43] K. Sung and L.-S. Kim, “A high-resolution synchronous mirror delay using successive approximation register,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1997–2004, Nov. 2004.
[44] C.-L. Hung, C.-L. Wu, and K.-H. Cheng, “Arbitrary duty cycle synchronous mirror delay circuits design,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), 2006, pp. 283–286.
[45] K.-H. Cheng, C.-W. Su, and K.-F. Chang, “A high linearity, fast-locking pulsewidth control loop with digitally programmable duty cycle correction for wide range operation,” IEEE J. Solid-State Circuits, 2008, vol. 43, no. 2, pp. 399–413, Feb. 2008
[46] R.B. Watson Jr., R.B. Iknaian, “Clock buffer chip with multiple target automatic skew compensation,” IEEE J. Solid-State Circuit, vol. 30, no. 11, pp. 1267–1276, Nov. 1995.
[47] H. Sutoh, K. Yamakoshi, and M. Ino, “Circuit technique for skew-free clock distribution,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 1995, pp. 163–166.
[48] S. Tanoi, T. Tanabe, K. Takahashi, S. Miyamoto, and M. Uesugi, “A 250-622 MHz deskew and jitter-suppressed clock buffer using two-loop architecture,” IEEE J. Solid-State Circuit, vol. 31, no. 4, pp. 487–493, Apr. 1996.
[49] K.-H. Cheng, C.-W. Su, and S.-W. Lu, “Wide-range synchronous mirror delay with arbitrary input duty cycle,” IEE Electron. Lett., vol. 44, no. 11, pp. 655–667, May 2008.
[50] Y.-J. Jeon et al., “A 66-333-MHz 12-mW register-controlled DLL with a single delay line and adaptive-duty-cycle clock dividers for production DDR SDRAMs,” IEEE J. Solid-State Circuit, vol. 39, no. 11, pp. 2087–2092, Nov. 2004.
[51] Amr M. Fahim, “A compact, low-power low-jitter digital PLL,” in Proc. IEEE European Solid-State Circuits Conf. (ESSCIRC), 2003, pp. 101–104.
[52] R.-J. Yang and S.-I. Liu, “A 2.5GHz all-digital delay-locked loop in 0.13 μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2338–2347, Nov. 2007.
[53] R.-J. Yang and S.-I. Liu, “A 40–550 MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 361–373, Feb. 2007.
[54] K.-W. Lee et al., “A 1.5-V 3.2 Gb/s/pin graphic DDR4 SDRAM with dual-clock system, four-phase input strobing, and low-jitter fully analog DLL,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2369–2377, Nov. 2007.
[55] D. Shin, et al., “A 7ps-jitter 0.053mm2 fast-lock ADDLL with wide-range and high-resolution all-digital DCC,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2007, pp. 184–595.
[56] B.-G. Kim, et al., “A DLL with jitter-reduction techniques for DRAM interfaces,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2007, pp. 496–497.
[57] F. Lin, R. A. Royer, B. Johnson, and B. Keeth, “A wide-range mixed-mode DLL for a combination 512 Mb 2.0 Gb/s/pin GDDR3 and 2.5 Gb/s/pin GDDR4 SDRAM,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 631–641, Mar. 2008.
[58] W.-J. Yun et al., “A 0.1-to-1.5GHz 4.2mW all-digital DLL with dual duty-cycle correction circuit and update gear circuit for DRAM in 66nm CMOS technology,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 282–613. |