博碩士論文 92521058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.21.247.145
姓名 陳晉鴻(Ginn-Horng Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 交流非晶質碳化矽氫薄膜發光二極體之研製
(Design and Fabrication of Alternating Current a-SiC:H Thin-Film Light-Emitting Diodes)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的主要目的是研製交流非晶質薄膜發光二極體。在現階段,我們成功地運用一層很薄的本質非晶碳化矽氫做為發光層,且利用PECVD系統將ITO透明電極表面做氧電漿處理,提高ITO透明電極功函數並降低與本質非晶碳化矽氫之間的蕭特基位障。實驗結果顯示,適當的氧電漿處理確實能夠有效改善接觸電阻,大幅提升元件發光效率;若更進一步加以退火處理,使ITO透明電極再結晶而降低其片電阻值,則元件會有更佳的可靠度。同時我們也對元件做一系列電性量測,包括發光亮度、發光頻譜以及交流頻率響應等。量測結果顯示,不同大小的電壓及頻率幾乎不會改變發光波段,而且我們也發現當薄膜發光二極體操作在特定頻率範圍時,可有效提昇元件發光亮度。
摘要(英) The a-SiC:H thin-film light-emitting diodes (TFLED) which could be operated under the alternating current (AC) power supply have been designed and fabricated in this study. So far, the intrinsic a-SiC:H layer has been successfully used as the radiative layer and the effects of treating indium-tin-oxide (ITO) electrode surface with O2-plasma on the TFLED performance has been investigated. The O2-plasma treatment of ITO electrode resulted in an increase of its work function, and the brightness of a plasma-treated device has been significantly increased at the same injected current. In addition, it has been found that sheet resistance of the ITO films after annealing was decreased, and the reliability of device could be improved obviously. The frequency response of the obtained devices has been studied too. The peak wavelength of electroluminescence (EL) spectrum was almost independent of applied-voltage amplitude and frequency, and a higher EL intensity of the device was observed when the device was operated under a particular frequency range. The role of the AC frequency for the EL intensity was discussed also.
關鍵字(中) ★ 發光二極體
★ 交流
★ 薄膜發光二極體
關鍵字(英) ★ ITO treatment
★ Thin Film Light Emitting Diodes
★ Alternating Current
論文目次 Table Captions...............................................................Ⅲ
Figure Captions..............................................................Ⅳ
Chapter 1 INTRODUTION........................................................1
Chapter 2 EXPERIMENTAL PROCEDURES............................................4
2.1 Preparations of Various Thin-Films........................................4
2.1.1 Deposition System.......................................................4
2.1.2 Film Depositions........................................................4
2.2 Device Synopsis...........................................................9
2.3 Device Fabrication.......................................................13
2.4 Measurement Techniques...................................................15
2.4.1 Optical Bandgap of Amorphous film......................................15
2.4.2 EL Intensity and Brightness............................................16
2.4.3 EL Spectrum and Frequency Response.....................................16
2.4.4 Brightness Under Alternating Current Operation.........................16
2.4.5 Electrical Circuit of Output Buffer....................................17
Chapter 3 RESULTS AND DISCUSSIONS...........................................23
3.1 Effects of O2-Plasma and Heat Treatments on ITO..........................23
3.1.1 Treating ITO with O2-plasmas having different RF power densities.......24
3.1.2 Treating ITO with O2-plasmas having different process durations........28
3.1.3 Post-plasma-treatment annealing........................................28
3.2 Current-Conduction Mechanism of the AC TFLED..........................31
3.2.1 Ideality Factor........................................................31
3.2.2 Low Electric-Field Region..............................................37
3.2.3 High Electric-Field Region.............................................39
3.3 B-J Characteristics......................................................39
3.4 EL Spectra...............................................................43
3.5 AC-Mode Measurement for Frequency Response...............................46
Chapter 4 CONCLUSION........................................................58
REFERENCES...................................................................60
APPENDIX Ⅰ..................................................................65
參考文獻 [1] N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials,” 2nd ed., chap. 6, Oxford University Press, pp. 288, 1979.
[2] J. I. Pankove and D. E. Carson, “Electroluminescence in Amorphous Silicon,” Appl. Phys. Lett., Vol. 29, pp. 620, 1976.
[3] A. J. Rhodes, P. K. Bhat, I. G. Austin, T. M. Searle, and R. A. Gibson, “Luminescence Phenomena in a-Si:H p-i-n Junction,” J. Mon-Cryst. Solid, Vol. 59 & 60, pp. 365, 1983.
[4] D. Kruangam, T. Endo, W. Guang-Pu, H. Okamoto, and Y. Hamakawa, “Visible-Light Injection-Electroluminescent a-SiC:H p-i-n Diode,” Jpn. J. Appl. Phys., Vol. 24, No. 10, pp. L806-L808, 1985.
[5] D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa “Amorphous Silicon-Carbide Thin-Film Light Emitting Diode,” Optoelectronics Devices and Technologies, Vol. 1, No. 1, pp. 67-84, 1986
[6] D. Kruangam, M. Deguchi, T. Toyama, H. Okamoto, and Y. Hamakawa, “Carrier Injection Mechanism in a-SiC:H p-i-n Junction Thin-Film LED,” IEEE Trans. Electron Devices, Vol. 35, No. 7, pp.957, 1988.
[7] S. M. Paasche, T. Toyama, H. Okamoto, and Y. Hamakawa, “Amorphous-SiC Thin Film p-i-n Light-Emitting Diode Using Amorphous-SiN Hot-Carrier Tunneling Injection Layers,” IEEE Trans. Electron Devices, Vol. 36, No.12, pp. 2895, 1989.
[8] Y. Z. Yang, D. D. Gebler, L. B. Lin, J. W. Blatchford, S. W. Jessen, H. L. Wang, and A. J. Epstein, “Alternating-Current Light-Emitting Devices Based on Conjugated Polymers,” Appl. Phys. Lett., Vol. 68, pp. 894-896, 1996.
[9] H. L. Wang, F. Huang, A. G. MacDiarmid, Y. Z. Wang, D. D. Gebler, A. J. Epstein, “Application of Aluminum, Copper and Gold Electrodes in A.C. Polymer Light-Emitting Devices,” Synth. Met., Vol. 80, pp. 97-104, 1996.
[10] A. J. Pal, R. Österbacka, K. M. Källman, and H. Stubb, “High-Frequency Response of Polymeric Light-Emitting Diodes,” Appl. Phys. Lett., Vol. 70, pp. 2022-2024, 1997.
[11] I. D. Parker, “Carrier Tunneling and Device Characteristics in Polymer Light-Emitting Diodes,” J. Appl. Phys., Vol. 75, pp. 1656-1666, 1994.
[12] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, “Enhanced Performance of Polymer Light-Emitting Diodes Using High-Surface area Polyaniline Network Electrodes,” J. Appl. Phys., Vol. 77, pp. 694-698, 1995.
[13] I. Solomon, M. P. Schmidt, and H. Tran–Quoc, “Selective Low-Power Plasma Decomposition of Silane-Methane Mixtures for the Preparation of Methylated Amorphous Silicon,” Phys. Rev. B, Vol. 38, pp. 9895–9901, 1988
[14] I. Pereyra and M. N. P. Carreño, “Wide Gap a-Si1−xCx:H Thin Films Obtained Under Starving Plasma Deposition Conditions,” J. Non-Cryst. Solids, Vol. 201, pp. 110-118, 1996.
[15] I. Pereyra, C. A. Villacorta, and M. N. P. Carreño, “Highly Ordered Amorphous Silicon-Carbon Alloys Obtained by RF PECVD,” Brazillian Journal of Physics, Vol. 30, pp. 533-540, 2000.
[16] J. Y. Chen, “The Effect of Graded-Gap and Barrier Layer Structure on the Electroluminescence Properties of a-SiC:H p-i-n Thin-Film Light Emitting Diode,” M. S. Thesis, NCU, Taiwan, R.O.C., 1992.
[17] T. Osada, Th. Kugler, P. Bröms, and W. R. Salaneck, “Polymer-Based Light-Emitting Devices: Investigations on the Role of the Indium-Tin Oxide (ITO) Electrode,” Synth. Met., Vol. 96, pp. 77-80, 1998.
[18] Kiyoshi Sugiyama, Hisao Ishii, Yukio Ouchi, and Kazuhiko Seki, “Dependence of Indium-Tin-Oxide Work Function on Surface Cleaning Method as Studied by Ultraviolet and X-ray Photoemission Spectroscopies,” J. Appl. Phys., Vol. 87, pp. 295-298, 2000.
[19] Heh-Nan Lin, Sy-Hann Chen, Gung-Yeong Perng and Show-An Chen, “Nanoscale Surface Electrical Properties of Indium-Tin- Oxide Films for Organic Light Emitting Diodes Investigated by Conducting Atomic Force Microscopy,” J. Appl. Phys., Vol. 89, pp. 3976-3979, 2001.
[20] J. Tanc, Amorphous and Liquid Semiconductors, chap. 5, Plenum Press, pp. 175, 1974.
[21] J. R. Sheas, H. Antoniadis, M. Hueschen, W. Leonard, J.Miller, R. Moon, D. Roitman, and A. Stocking, “Organic Electroluminescent Devices,” Science, vol. 273, pp. 884-888, 1996.
[22] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and Degradation of Organic Light Emitting Devices,” Appl. Phys. Lett., vol. 65, pp. 2922-2924, 1994.
[23] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, and J. A. Goitia, “Degradation and Failure of MEH-PPV Light-Emitting Diodes,” J. Appl. Phys., vol. 79, pp. 2745-2751, 1996.
[24] C. C. Wu, C. I. Wu, J. C. Sturm, A. Kahn, “Surface Modification of Indium Tin Oxide by Plasma Treatment: An Effective Method to Improve the Efficiency, Brightness, and Reliability of Organic Light Emitting Devices,” Appl. Phys. Lett., vol. 70, pp. 1348-1350, 1997.
[25] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A-M. Hor and H. Aziz, “Surface Electronic Structure of Plasma-Treated Indium Tin Oxides,” Appl. Phys. Lett., vol. 78, pp. 2595-2597, 2001.
[26] D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, and J. Schwartz, “Surface Oxidation Activates Indium Tin Oxide for Hole Injection,” J. Appl. Phys., vol. 87, pp. 572-576, 2000.
[27] G. Y. Kim, J. S. Oh, E. H. Choi, G. S. Cho, S. O. Kang, and J. Cho, “Work Function Change on O2-plasma Treated Indium-Tin-Oxide,” Mater. Sci. Eng. B, Vol. 100, pp. 275-279, 2003.
[28] K. B. Sundaram and Jila Blanchard, “Deposition and Annealing Studies of Indium Tin Oxide Films,” Southeastcon ’97. “Engineering new New Century”, Proceedings. IEEE 12-14. pp. 230-232, 1997.
[29] D. V. Morgan, A. Salehi, Y. H. Aliyu, and R. W. Bunce, “Electro-Optical Characteristics of Indium Tin Oxide (ITO) Films : Effect of Thermal Annealing,” Renewable Energy, Vol. 7, pp. 205-208, 1996.
[30] Li-jian Meng, A Macarico, and R Martins, “Study of Annealing Indium Tin Oxide Films Prepared by RF Reactive Magnetron Sputtering,” Vacuum, Vol. 46, pp. 673-680, 1995.
[31] A. Rose, “Space-Charge-Limited Currents in Solids,” Phys. Rev., Vol. 97, pp. 1538-1544, 1955.
[32] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed. New York : Wiley, pp. 402, 1981.
[33] M. L. Hsu, “Thin-Film LED and Transistor Fabricated by Using a PECVD System with a Mesh,” M. S. Thesis, NCU, Taiwan, R.O.C., 1999.
[34] J. Kanicki, “Amorphous and Microcrystalline Semiconductor Devices Volume Ⅱ : Materials and Device Physics,” Chap. 5, Artech House, 1992.
[35] R. Österbacka, A. J. Pal, K.-M. Källman, and H. Stubb, “Frequency Response of Molecularly Thin Alternating Current Light-Emitting Diodes,” J. Appl. Phys., vol. 83, pp. 1748-1752, 1998.
[36] Jong-Wook Lee and Koeng Su Lim, “Ex Situ Hydrogen Passivation Effect of Visible p-i-n Type Thin-Film Light-Emitting Diode Characteristics,” J. Appl. Phys., vol. 81, pp. 2432-2436, 1997.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2005-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明