博碩士論文 92521066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.131.13.24
姓名 林東明(Dong-Ming Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 異質接面雙極性電晶體大訊號模型建立及光通訊前端電路實作
(Direct Extraction of an Empirical Large-Signal Model for Heterojunction Bipolar Transistors and Implementation of Optical Front-End Circuits)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,完成一擁有溫度效應 InGaP/GaAs HBT 大訊號模型,利用在不同溫度下量測完成元件直流與交流相關參數萃取,使用 CW 量測方式,將熱電阻萃取出,加以描述元件自我加熱現象。並在真空液態氮環境中,量測與驗證元件小訊號與功率特性在不同溫度下(-40℃~85℃)。為了彌補元件模型在高頻雜訊不足,本論文將利用 SDD 與元件物理特性加以描述雜訊特性完成雜訊模型。
接著利用 InGaP/GaAs HBT 完成光通訊前端電路,傳送端雷射驅動器擁有高輸出調變電流與高電壓振幅將可以分別使用直接調變方式與間接調變方式驅動雷射二極體與光電調變器。接收端,轉阻放大器利用各級間不匹配與主動式回授增強頻寬使其符合 10 Gb/s 光通訊應用。
摘要(英) In this thesis, temperature dependence of InGaP/GaAs HBT large signal model was implemented, and the parameters about DC and AC of this device were further extracted under different temperatures. The thermal resistance was extracted by CW measurement to define self-heating phenomenon for HBT. Otherwise, small signal and power characteristic of device were derived and measured under different temperatures from 85℃ to -40℃ at vacuum LiN2 environment. In order to improve the disadvantage, which VBIC model described high frequency noise, AgilentTM ADS symbolically defined devices and physical characteristic are used.
However, InGaP/GaAs HBT technology was used(fabricated) to implement optical front-end circuits. Laser driver in the transmitter has the characteristics of high output voltage swing and high output modulated current, which can drive directly laser diode or indirectly modulator(EAM). In the receiver, mismatch technology and active feedback were utilized for the transimpedance amplifier to enhance bandwidth and it is conformed to 10 Gb/s optical communication application.
關鍵字(中) ★ 轉阻放大器
★ 異質接面雙極性電晶體
★ 大訊號模型
★ 雷射驅動電路
★ 溫度效應
★ 光纖通訊
關鍵字(英) ★ large signal model
★ HBT
★ temperature effect
★ optical communication
★ laser driver
★ transimpedance amplifier
論文目次 目錄
第一章 導論 1
1.1 研究動機 1
1.2 論文大綱 2
第二章 異質接面雙極性電晶體模型建立 4
2.1 VBIC 模型介紹 4
2.2 直流參數分析與萃取 7
2.2.1 弱累增效應(Weak avalanche effect) 10
2.2.2 順向 Gummel plot 量測與萃取 11
2.2.3 逆向 Gummel plot 量測與萃取 14
2.3 基極寬度調變效應(Base Width Modulation Effect)萃取 15
2.4 類飽和效應(Quasi-saturation) 15
2.5 直流特性與電流增益量測及直流參數萃取 17
2.6 寄生電阻量測與萃取 19
2.6.1 集極寄生電阻萃取 19
2.6.2 射極寄生電阻萃取 20
2.6.3 基極寄生電阻萃取 21
2.7 接面電容分析與萃取 23
2.7.1 接面電容量測與萃取 25
2.8 傳輸時間參數分析與萃取 28
2.9 交流參數萃取與分析 31
2.10 高頻雜訊測與分析 31
2.11 微波功率大訊號驗證分析 35
2.11.1 微波功率驗證 35
2.11.2 微波功率分析 37
2.12 線性度分析驗證 40
2.12.1 三階截斷點 IP3 (third-order intercept point) 40
2.12.2 鄰近通道功率比例(adjacent channel power ratio) 42
2.13 結果與討論 43
第三章 溫度模型分析與建立 45
3.1 溫度參數萃取 45
3.2 熱電阻萃取 47
3.3 溫度對直流、交流特性分析 50
3.4 功率對溫度驗證與分析 54
3.5 結果與討論 56
第四章 光通訊前端電路實作 58
4.1 光通訊簡介 58
4.2 光通訊傳送/接收架構 60
4.3 雷射驅動器原理 61
4.4 雷射驅動器 62
4.5 雷射驅動電路模擬與量測結果 65
4.6 轉阻放大器原理 68
4.7 轉阻放大器設計 69
4.8 轉阻放大器模擬與量測結果 71
4.9 結果與討論 72
第五章 結論 74
參考文獻 [1] Xiaochong Cao J. McMachen, K. Stiles, P. Layman, Jiou, Adelmo Ortiz-Conde, and S. Moinian.” Comparison of the New VBIC and Conventional Gummel-Poon Bipolar Transistor Models,” IEEE Trans. Electron Devices,Vol. 47, No.2, PP427-433, February 2000.
[2] Colin C. McAndrew, Jerold A. Seitchik, Derek F. Bowers, Mark Dunn, Mark Foisy, Ian Getreu, Marc McSwain, Shahriar Moinian, James Parker, David J. Roulston, Michael Schroter, Pual van Wijnen, and Lawrence F. Wagner,” VBIC95, The Vertical Bipolar Inter-Company Model,” IEEE J. Solid-State Circuits, Vol. 31, No. 10, PP1476-1482, October 1996.
[3] H. K. Gummel and H. C. Poon, “ An integrated charge control model of bipolar transistors,” Bell Syst. Tech. J., Vol. 49, PP827-852, May 1970.
[4] Mohammad Sotoodeh, Lucia Sozzi, Alessandro Vinay, A.H. Khalid, Zhirun Hu, Ali A. Rezazadeh,and Roberto Menozzi,” Stepping Toward Standard Methods of Small-Signal Parameter Extraction for HBT’s,” IEEE Trans. Electron Devices, Vol.47, No.6, PP1139-1151, June 2000.
[5] W. Liu, “ Handbook of Ⅲ-Ⅴ Heterojunction Bipolar Transistor,” Willy, New York, 1986
[6] X. Cao, J. McMacken, K. Stiles, P. Layman, J. J. Liou, A. Sun,and S. Moinian,” Parameter Extraction and Optimal for New Industry Standard VBIC Model,” International Conference on Advanced Semiconductor Devices and Microsystems, Smolenice Castle, Slovakia, 5-7, PP107-115 October 1998.
[7] “ High-Frequency Model Tutorial,” Vol.1. ICCAP manual.
[8] Gobert, Y., Tasker, P. J., Bachem,and K. H.,” A physical, yet simple, small-signal equivalent circuit for the heterojunction bipolar transistor microwave theory and techniques,” IEEE Trans. Microwave Theory Tech, Vol. 45, No. 1, PP.149-153, Jan 1997.
[9] M. Kahn, S. Blayac, M. Riet, Ph. Berdaguer, V. Dhalliuin, F. Alexandre,and J. Godin,” Measurement of Base and Collector Transit Times in Thin-Base InGaAs/Inp HBT,” IEEE Electron Devices Lett. ,Vol. 24, No. 7, PP430-432, July 2003.
[10] S. V. Cherepko and J. C. M. Hwang, “ VBIC Model Application and Extraction Procedure for InGaP/GaAs HBT,” Proceeding of APMC 2001, PP716-721.
[11] C. T. Kirk, Jr., “ A Theory of Transistor Cutoff Frequency(fT) Falloff at High Current Densities,” IRE Trans. Electron Devices 19, PP.164-174 1962.
[12] Jianjun Gao, Xiuping Li, Lin Jia, Hong Wang, and Georg Boeck,” Direct Extraction of InP HBT Noise Parameters Based on Noise-Figure Measurement System,” IEEE Trans. Microwave Theory Tech, Vol. 53, No.1, PP330-335, January 2005.
[13] Qian Cai, Jason Gerber, Ulrich L. Rohde, and Tom Daniel, “ HBT High-Frequency Modeling and Integrated Parameter Extraction,” IEEE Trans. Microwave Theory Tech , Vol. 45, No. 12, PP2493-2502, December 1997.
[14] R. J. Hawkins, “ Limitations of Nielsen’s and Related Noise Equations Applied Microwave Bipolar Transistors, and a New Expression for the Frequency and Current Dependent Noise figure”, Solid-State Electron, 20, PP.191-196, 1977.
[15] A. Issaoun, D. Dousset, A. B. Kouki,and F. M. Ghannouchi, “ A Novel Temperature-Dependent Gummel-Poon Based Large Signal For Accurate Modeling of Heterojunction Bipolar Transistors,” Electrical and Computer Engineering, Canadian Conference on Vol. 2-5, PP.27-30 2004.
[16] A. Issaoun, A. B. Kouki,and F. M. Ghannouchi, “ Symbolically Defined Empirical Large-Signal Model for HBTs Compared to the Gummel-Poon Model,” Electrical and Computer Engineering, Canadian Conference on Vol. 2-5, PP.31-34, 2004.
[17] Hyun-Min Park, Songcheol Hong, “ A Novel Temperature-Dependent Large-Signal Model of Heterojunction Bipolar Transistor With a Unified Approach for Self-Heating and Ambient Temperature Effects,” IEEE Trans. Electron Devices, Vol. 49, No. 12, PP.2009-2106, December 2002.
[18] Dale E. Dawson, Aditya K. Gupta,and Mike L. Salib, “ CW Measurement of HBT Thermal Resistance,” IEEE Trans. Electron Devices, Vol. 39. No. 10. PP.2235-2239, October 1992.
[19] Steve P. Marsh, “Direct extraction technique to derive the junction temperature of HBT's under high self-heating bias conditions,” IEEE Trans Electron Devices, Vol. 47, No. 2, PP.288-291, February 2000.
[20] Frank Schwierz, and Juin J. Liou, “ Modern Microwave Transistors Theory, Design, and Performance,” Willy, 2003.
[21] David A. Ahmari, Gopal Raghavan, Quesnell J. Hartmann, Michael L. Hattendorf, Milton Feng, and Gregory E. Stillman, “ Temperature Dependence of InGaP/GaAs Heterojunciton Bipolar Transistor DC and Small-Signal Behavior,” IEEE Trans. Electron Devices, Vol. 46, No. 4, PP.634-640, April 1999.
[22] Ce-Jun Wei, James C. M. Hwang, Wu-Jing Ho,and J. Aiden Higgins, “ Large-Signal Modeling of Self-Heating, Collector Transit-Time, and RF-Breakdown Effects in Power HBT’s,” IEEE Trans. Microwave Theory Tech, Vol. 44, No. 12, PP.2641-2647, December 1996.
[23]“DWDM Performance and Conformance Test Primer”, Application Note of Tektronix, 2001.
[24] Gerd Keiser, “ Optical Fiber Communications,” McGraw Hill, 2000.
[25] “Accurately Estimating Optical Receiver Sensitivity”, Application Noted of MAXIM, 2001.
[26] Behzad Razavi, “ Design of Integrated Circuits for Optical Communications,” McGraw Hill, 2002.
[27] Jesper Riish, “ 2.5 Gb/s Laser Driver GaAs IC,” J. Lightwave Tech, Vol. 11 No. 9, PP.1014-1021, Sep. 1994.
[28] “ Interfacing Maxim Laser driver with Laser Diode”, Application Note of Maxim, 2000.
[29] H. M. Rein, and M. Moller, “ Design Considerations for Very-High-Speed Si-Bipolar IC’s Operating up to 50 Gb/s,” IEEE J. Solid-State Circuits, Vol. 31, No. 8, PP.1076-1087, August 1996.
[30] H. M. Rein , R. Schmid, P Weger, T. Smith, T. Herzog,and R. Lachner, “ A Versatile Si-Bipolar Driver Circuit with High Output Voltage Swing for External and Direct Laser Modulation in 10 Gb/s Optical-Fiber Links,” IEEE J. Solid-State Circuits, Vol. 29, No. 9, PP.1014-1021, September 1994.
[31] M. Moller, H. M. Rein,and H. Wernz, “ 13 Gb/s Si-Bipolar AGC Amplifier IC with High Gain and Wide Dynamic Range for Optical-Fiber Receivers,” IEEE J. Solid-State Circuits, Vol. 29, No. 7, PP.815-822, July 1994.
[32] E. M. Cherry and D. E. Hooper, “ The design of wide-band transistor feedback amplifier,” Proc. IEEE, Vol. 110, PP.375-389, Feb 1963.
[33] Chris D. Holdenried, James W. Haslett,and Michael W. Lynch, “ Analysis and Design of HBT Cherry-Hooper Amplifiers With Emitter-Follower Feedback for Optical Communications,” IEEE J. Solid-State Circuits, Vol. 39, No.11, PP.1959-1967, November 2004.
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2005-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明