博碩士論文 92521069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.142.98.60
姓名 周均鴻(Jun-Hung Chou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 切換系統的穩定性分析與設計
(Stability analysis and design of switched systems)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
切換系統為混成系統的一種,它由許多的子系統和一組切換訊號所構成。具polytope形式的切換系統和T-S模糊模型切換系統是本論文所探討的兩種切換系統。我們先對這兩種系統提出其為可穩定的充分條件,並且針對可穩定的系統提出穩定性的設計方法,而在設計的過程當中,遭遇到求解雙線性不等式的問題,因此,我們亦提出了以疊代線性不等式的演算法求解此類雙線性不等式的問題,並且各舉了兩個例子,說明我們所提出方法的存在價值與優點。
摘要(英) Abstract
A switched system is a hybrid system that consists of several subsystems and a switching law indicating the active subsystem at each time instant. In this thesis, two categories of switched systems are considered. One is the switched system with polytopic uncertainties and the other is the switched T-S fuzzy system. Sufficient conditions are proposed for stabilizing the switched system with polytopic uncertainties and the switched T-S fuzzy system, respectively. The design methods are also proposed to stabilize these two switched systems. In design, we encounter the bilinear matrix inequalities (BLMIs) problem. An iterative linear matrix inequalities algorithm is proposed to solve the BLMI problems. Examples are given to illustrate the feasibility of the proposed results.
關鍵字(中) ★ 雙線性矩陣不等式
★ 切換系統
★ 線性矩陣不等式
關鍵字(英) ★ switched system
★ bilinear matrix inequality
★ linear matrix inequality
論文目次 CONTENTS
List of figures Ⅲ
CHAPTER 1 Introduction 1
1.1 Hybrid systems and switched systems 1
1.2 Organization 3
CHAPTER 2 Stability of Switched systems 5
2.1 Introduction 5
2.2 Stability under Arbitrary Switching 7
2.2.1 Common Lyapunov function 7
2.2.2 Matrices with commute pairwise property 8
2.2.3 Triangular system 11
2.2.4 Matrix pencil conditions 14
2.3 Stabilizing Switching Signals 16
2.3.1 A suitable switching signal 16
2.3.2 State-based switching strategy 25
2.3.3 Multiple Lyapunov Function 27
2.3.4 Slow switching 29
CHAPTER 3 T-S Fuzzy Model 32
3.1 Introduction to Takagi-Sugeno fuzzy model 32
3.2 Stability analysis via Lyapunov function 33
3.3 Parallel distributed compensation 34
3.4 Relaxed stability condition 35
CHAPTER 4 Stabilization of switched systems with polytopic uncertainties 37
4.1 Introduction 37
4.2 Preliminaries 38
4.2.1 Some definitions and lemmas 38
4.2.2 The uncertain systems of polytopic type 39
4.3 Two-switched uncertain system 41
4.4 Solution to the BLMI Problems 44
4.5 Multiple-switched uncertain system 45
4.6 Numerical Examples 47
4.7 Conclusions 52
CHAPTER 5 Stablilzation of switched T-S fuzzy system 53
5.1 Introduction 53
5.2 Problem statement 54
5.3 Two-switched T-S fuzzy system 56
5.4 Solution to the BLMI Problems 62
5.5 Multiple-switched T-S fuzzy system 64
5.6 Numerical Examples 66
5.7 Conclusions 75
CHAPTER 6 Conclusions and future works 76
6.1 Conclusions 76
6.2 Future works 77
參考文獻 References
[1] S. Pettersson, “Analysis and design of hybrid systems,” Ph.D. thesis, Chalmers University of Technology, Sweden, 1999.
[2] H. S. Witsenhausen, “A class of hybrid-state continuous-time dynamic systems,” IEEE Trans. on Automatic Control, vol. 11, no. 2, pp. 161–67, 1966.
[3] F. E. Cellier, “Combined continuous/discrete system simulation by use of digital computers: techniques and tools,” Ph.D. thesis, Swiss Federal Institute of Technology, Switzerland, 1979.
[4] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air traffic management: A study in multiagent hybrid systems,” IEEE Trans. on Automatic Control, vol. 43, no. 4, pp. 509–521, 1998.
[5] Y. M. Chan, “Supervised Nonlinear Control of Hybrid System, with Application to HVAC System,” master’s thesis, Department of electrical engineering, National Taiwan University, Taiwan, R.O.C., 2003.
[6] J. Lygeros, D. N. Godbole, and S. Sastry, “Verified hybrid controllers for automated vehicles,” IEEE Trans. on Automatic Control, vol. 43, no. 4, pp. 522–539, 1998.
[7] A. Gollu and P. Varaiya, “Hybrid dynamical systems,” In Proc. of 28th IEEE Conference on Decision and Control, pp. 2708–2712, 1989.
[8] B. Lennartson, M. Tittus, B. Egardt, and S. Pettersson, “Hybrid systems in process control,” Control Systems Magazine, vol. 16, no. 5, pp. 45–55, 1996.
[9] M. Dogruel, S. Drakunov and U. Ozguner, “Sliding mode control in discrete state Systems,” In proceedings of 32nd Conference on Decision and Control, pp. 1194–1199, 1993.
[10] I. A. Hiskens, “Analysis tools for power systems–contending with nonlinearities,” Proceedings of the IEEE, vol. 83, no. 11, pp. 1573–1587, 1995.
[11] L. Y.Wang, A. Beudoun, J. Cook, J. Sun, and I. Kolmanovsky, “Optimal hybrid control with applications to automotive powertrain systems,” A. S. Morse (editor), Lecture Notes in Control and Information Sciences vol. 222: Control using Logic-based switching, Springer, pp. 190–200, 1996.
[12] A. J. van der Schaft and J. M. Schumacher, “Complementarity modeling of hybrid systems,” IEEE Trans. on Automatic Control, vol. 43, no. 4, pp. 483–490, 1998.
[13] C. K. Tseng, “Stability analysis and application of hybrid dynamical systems,” master’s thesis, Department of electrical engineering, National Cheng Kung University, Taiwan, R.O.C., 2000.
[14] P. J. Antsaklis and A. Nerode (editors), IEEE Transactions on Automatic Control, vol.43, no. 4,1998.
[15] T.A. Henzinger and S. Sastry (editors), Hybrid Systems : control and Computation, 1st International Workshop, HSCC98, Lecture Notes in Computer Science, vol. 1386, Springer, 1998.
[16] T. J. Koo, “Hybrid system design and embedded controller synthesis for multi-modal control,” Ph.D. thesis, Department of electrical engineering and computer sciences, University of California at Berkeley, California, 2000.
[17] M.S. Branicky, V.S. Borkar, and S.K. Mitter, “A unified framework for hybrid control: model and optimal control theory,” IEEE Transactions on Automatic Control, vol.43, no. 1, pp. 31–45, 1998.
[18] X. Xu, “Analysis and design of switched systems,” Ph.D. thesis, Department of electrical engineering, University of Notre Dame, Indiana, 2001.
[19] Z. Sun, S.S. Ge and T.H. Lee, “Controllability and reachability criteria for switched linear systems,” Automatica, vol. 38, pp. 775–786, 2002.
[20] Z. Sun, “Stabilizability and Insensitivity of Switched Linear Systems,” IEEE Trans. on Automatic Control, vol. 49, no. 7, pp. 1133–1137, 2004.
[21] X. Xu and P. J. Antsaklis, “Optimal control of switched systems based on parameterization of the switching instants,” IEEE Trans. on Automatic Control, vol. 49, no. 1, pp. 2–16, 2004.
[22] G. Xie and L. Wang, “Controllability and stabilizability of switched linear systems,” Systems and Control Letters, vol. 48, pp. 135–155, 2003.
[23] S. C. Bengea and R. A. DeCarlo, “Optimal control of switching systems,” Automatica, vol. 41, pp. 11–27, 2005.
[24] Z. Sun and S.S. Ge, “Analysis and synthesis of switched linear control systems,” Automatica, vol. 41, pp. 181–195, 2005.
[25] L. Hou, A. N. Michel and H. Ye, “Stability analysis of switched systems,” In proceedings of 35th Conference on Decision and Control, pp.1208–1212, 1996.
[26] J. P. Hespanha and A.S.Morse, “Stabilization of nonholonomic integrators via logic-based switching,” Automatica, vol. 35, pp. 385–393, 1999
[27] J. P. Hespanha, D.Liberzon , and A.S.Morse, “Logic-based switching control of a nonholonomic system with parametric modeling uncertainty,” System & control Letter, vol. 38, pp. 167–177, 1999
[28] D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems,” IEEE Control System Magazine, vol. 19, no. 5, pp. 59–70, 1999.
[29] R. A. DeCarlo, M. S Branicky, S. Pettersson, and B. Lennartson, “Perspectives and results on the stability and stabilizability of hybrid systems,” Proc. IEEE, vol. 88, pp. 1069–1082, July 2000.
[30] A. S. Morse (Editor), “Control using logic-based switching,” Lecture Notes in Control and Information Sciences 222, Springer, 1996.
[31] D. T. Zhou, Y. Xiao, J. C. Mu, “The stability analysis of switched systems,” International Conferences on Info-tech and Info-net, pp. 215–220, 2001.
[32] D. Liberzon, J. P. Hespanha and A. S. Morse, “Stability of switched systems: a Lie-algebraic condition,” Systems and Control Letters, vol. 37, pp. 117–122, 1999.
[33] K. S. Narendra and J. Balakrishnan, “A common Lyapunov function for stable LTI systems with commuting A-matrices,” IEEE Trans. on Automatic Control, pp. 2469–2471, 1994.
[34] Y. Mori, T. Mori, and Y. Kuroe, “A solution to the common Lyapunov function problem for continuous time systems,” In proceedings of 36th Conference on Decision and Control, pp. 3530–3531, 1997.
[35] R. A. Horn and C. R. Johnson, “Matrix analysis,” Cambridge university press, 1985.
[36] R. N. Shorten and K. S. Narendra, “On the stability and existence of common Lyapunov functions for stable linear switching systems,” In proceedings 37th Conference on Decision and Control, pp. 3723–3724, 1998.
[37] D. Hershkowitz and H. Schneider, “On the inertia of intervals matrices,” SIAM J. Matrix Anal. Appl., vol. 11, no. 4, pp. 565–574, 1990
[38] R. N. Shorten, K. S. Narendra, “A sufficient condition for the existence of a common Lyapunov function for two second order linear systems,” In Proc. of the 36th IEEE Conference on Decision and Control, pp. 3521–3522, 1997.
[39] R. N. Shorten, K. S. Narendra, “Necessary and sufficient condition for the existence of a common quadratic Lyapunov function for two stable second order linear time invariant systems,” Proc. 1999 American Control Conference, pp. 1410–1414, 1999
[40] R. N. Shorten, K. S. Narendra, and O. Mason, “A result on common quadratic Lyapunov Functions,” IEEE Trans. on Automatic Control, vol. 48, no. 1, pp. 110–113, 2003.
[41] Z. Ji, L. Wang, G. Xie and F. Hao, “Linear matrix inequality approach to quadratic stabilisation of switched systems,” IEE Proc.-Control Theory and applications, vol. 151, no. 3, pp. 289–294, 2004.
[42] M. A. Wicks, P. Peleties and R. A. DeCarlo, “Construction of piecewise Lyapunov functions for stabilizing switched systems,” In Proc. of the 33rd IEEE Conference on Decision and Control, pp. 3492–3497, 1994.
[43] M. S. Branicky, “Stability of Switched and Hybrid Systems,” In Proc. of the 33rd IEEE Conference on Decision and Control, pp. 3498–3503, 1994.
[44] M. S. Branicky, “Stability of Hybrid Systems: State of the Art,” In Proc. of the 36th IEEE Conference on Decision and Control, pp. 120–125, 1997.
[45] M. S. Branicky. “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Trans. on Automatic Control, vol. 43, no. 4, pp. 475–482, 1998.
[46] A. S. Morse, “Supervisory control of families of linear set-point controllers, part Ⅰ:Exact matching ,” IEEE Trans. on Automatic Control, vol. 41, pp. 1413–1431, 1996.
[47] J. P. Hespanha, A. S. Morse, “Stability of switched systems with average dwell time,” In Proc. of the 38th IEEE Conference on Decision and Control, pp. 2655–2660, 1999.
[48] P. Peleties and R. A. DeCarlo, “Asymptotic stability of m-switched systems using Lyapunov-like functions,” Proc. 1991 American control Conference, pp.1679– 1684, 1991.
[49] A. S. Morse, “Supervisory control of families of linear set-point controllers–part 1: exact matching,” IEEE Trans. on Automatic Control, vol. 41, no. 10, pp. 1413–1431, 1996.
[50] J. P. Hespahha, “Stability of switched systems with average dwell time,” In proceedings of 38th Conference on Decision and Control, pp. 2655–2660, 1999.
[51] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. System, Man, Cybernetics, vol. 15, pp. 116–132, 1985.
[52] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135–156, 1992.
[53] M. Sugeno, G. T. Kang, “Fuzzy modeling and control of multilayer Incinerator,” Fuzzy Sets and Systems, vol. 18, pp. 329–346, 1986.
[54] H. O. Wang, K. Tanaka, and M. F. Griffin, “Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model,” proc. of fuzzy systems IEEE, pp. 531–538, 1995.
[55] K. Tanaka, T. Ikeda, H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 2, pp. 250–265, 1998.
[56] K. Tanaka, H. O. Wang, “Fuzzy control systems design and analysis : A linear matrix inequality approach,” John Wiley & Sons Inc., New York, 2000.
[57] D. C. W. Ramos and P. L. D. Peres, “An LMI approach to compute robust stability domains for uncertain linear systems,” In Proc. of the American Control conference, pp. 4073–4078, 2001.
[58] D. C. W. Ramos and P. L. D. Peres, “An LMI condition for the robust stability of uncertain continuous-time linear systems,” IEEE Trans. on Automatic Control, vol. 47, no. 4, pp. 675–678, 2002.
[59] S. P. Bhattacharyya, “Robust stabilization against structured perturbations,” Lecture Notes in Control and Information Sciences 99, Springer-Verlag, 1987.
[60] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory,” SIAM, Philadelphia, PA, 1994.
[61] W. J. Rugh, “Linear System Theory - second edition,” Prentice-Hall, Inc, 1996.
[62] B. R. Barmish, New Tools for robustness of linear systems, New York, MacMillan, 1994.
[63] P. Gahinet, A. Nemirovski, A. Laub and M. Chilali, LMI control toolbox for use with Matlab (user’s guide), The mathworks Inc., 1995.
[64] K. Tanaka, M. Iwasaki, and H. O. Wang, “Switching control of an R/C Hovercraft : stabilization and smooth switching,” IEEE Trans. System, Man, Cybernetics partB, vol. 31, pp. 853–863, Dec. 2001.
指導教授 莊堯棠(Yau-Tarng Juang) 審核日期 2005-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明