博碩士論文 92521085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.145.115.139
姓名 吳新宗(Sin-Zong Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 不確定系統可控性和可觀性之研究
(A study of controllability and observability of uncertain systems)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
系統的控制性和可觀性在現代控制上一直以來都是重要的課題,本論文探討的是在不確定系統和不確定奇異系統的控制性和可觀性的問題。在實際的環境中存在著不可避免的干擾使系統的參數變動而增加了系統各項性能的不確定性,因此系統的強健性對一個良好的系統是有考慮必要的。
在本論文中,我們考慮不確定系統確保系統可控或可觀的參數可變動範圍,針對一般的系統,我們提出的方法可以搜尋出一般擾動的範圍和在匹配條件下保守性較低的範圍。另外對於奇異系統,我們提出一個較簡單的搜尋方法來尋找出確保C-controllable/observable R-controllable/observable 的範圍,另外對於I-controllability/ observability提出一個充份條件。
本論文針對不確定系統的可控性和可觀性做一較全面的分析,並針對各種不同定義的可控和可觀探討其強健性。
摘要(英) Abstract
In this thesis, the robust controllability and observability of linear continuous-time system and descriptor systems is investigated. For normal systems, the allowable bound is found and a less conservative result for matching conditions can be obtained by the proposed methods. For descriptor systems we proposed a simple way to search the allowable bound that ensure controllability/observability for C-controllability/ observability and R-controllability/ observability, besides the sufficient condition is made for I-controllability/observability. The given examples demonstrate the validity and efficiency of the proposed method.
關鍵字(中) ★ 可控性
★ 可觀性
★ 奇異系統
關鍵字(英) ★ Robust controllability/observability
★ descriptor systems
★ radius
論文目次 Contents...........................................................I
List of Figures..................................................III
Chapter 1 Introduction.......................................................1
1.1 Motivation....................................................1
1.2 Literature survey.............................................2
1.3 Organization of this thesis...................................3
Chapter2 The controllability and observability radius
of uncertain systems...............................................4
2.1 Introduction..................................................4
2.2 Problem formulation and preliminary...........................5
2.3 Controllability...............................................8
2.4 Observability ................................................10
2.5 Examples.....................................................13
2.6 Conclusions..................................................20
Chapter 3 The controllability and observability radius of
uncertain descriptor systems...........................................................21
3.1 Introduction.................................................21
3.2 Problem formulation and preliminary..........................22
3.3 C-controllability/observability..............................23
3.4 I-controllability/observability..............................34
3.5 R-controllability/observability..............................40
3.6 Examples.....................................................43
3.7 Conclusions..................................................47
Chapter 4 Conclusions...........................................48
References........................................................49
參考文獻 Reference
[1] C. C. Paige, “Properties of numerical algorithms related to computing controllability,” IEEE Trans, Automat. Contr., vol. AC-26, pp. 130-138, Feb. 1981.
[2] R. Eising, “Between controllable and uncontrollable,” Syst., Contr. Lett., vol. 4, pp. 263-264, July. 1984.
[3] D. L. Boley and W. Lu, “Measuring how far a controllable system is from an uncontrollable one,” IEEE Trans, Automat. Contr., vol. AC-31, pp. 249-251, Feb. 1986.
[4] M. Wicks and R. DeCarlo, “On the distance to an uncontrollable pair: A survey,” in proc. 25th Annu. Allerton Conf. Communications, Control, Computing, 1987.
[5] C. Kenney and A. J. Laub, “Controllability and stability radii for companion form systems,” Math. Contr., Signals, Syst., vol. 1, pp. 239-256, 1988
[6] D. K. Lindner, J. Babendreier, and A. M. A. Hamdan, “Measures of controllability and observability and residues.” IEEE Trans, Automat. Contr., vol. 34, pp. 648-650, Feb. 1989.
[7] M. Wicks, “Computing the distance to an uncontrollable system,” IEEE Trans, Automat. Contr., vol. 36, pp. 39-49, Jan. 1991.
[8] M. Tarokh, “Measures for controllability, observability, and fixed modes,” IEEE Trans, Automat. Contr., vol. 37, pp. 1268-1237, Feb. 1992.
[9] L. Qiu, B. Bernhardsson, A. Rantzer, E. J. Davison, P. M. Young, and J. C. Dolye, “A formula for computation of the real stability radius,” Automatica, vol. 31, no. 6, pp.879-890, 1995.
[10] G. Hu and E. J. Davison, “Real Controllability/Stabilizability Radius of LTI Systems” IEEE Trans, Automat. Contr., vol. 49, pp. 254-257, Feb. 2004.
[11] B. W. Cheng and J. Zhang, “Robust Controllability for a Class of Uncertain Linear Time-Invariant MIMO Systems,” IEEE Trans. Automat. Contr., vol. 49, pp. 2022-2027, 2004.
[12] R. A. Horn and C. R. Johnson, “Matrix Analysis,.” Cambridge, U.K.: Cambridge Univ. Press, 1985.
[13] C. T. Chen, “Linear System Theory and Design,.” New York: CBS College Publishing, 1984.
[14] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory,” SIAM: Philadelphis, PA, 1994.
[15] L.Dai, “Singular Control Systems,” Berlin, Germany: Springer-Verlag, 1989.
[16] C. Lin, J. L. Wang, D. H. Wang, and C. B. Soh, “Robustness of uncertain descriptor systems,” Syst. Contr. Lett., vol. 31, pp.129-138, 1997.
[17] C. Lin, J. L. Wang and C. B. Soh, “Necessary and sufficient conditions for the controllability of linear interval descriptor systems,” Automatica, vol. 34, pp. 363-367, 1998.
[18] C. Lin, J. L. Wang, G. H. Yang and C. B. Soh, “Robust C-Controllability and/or C-Observability for Uncertain Descriptor Systems with Interval Perturbations in All Matrices ,” IEEE Trans. Automat. Contr. vol. 44, pp.1768-1773, 1999.
[19] A. Ailon, “Controllability of generalized linear time-invariant systems,” IEEE Trans. Automat. Contr., vol. 32, pp. 429-432, 1987.
[20] J. C. Cobb, “Controllability, observability and duality in singular systems,” IEEE Trans. Automat. Contr., vol. 29, pp. 1076-1082, 1984.
[21] E. L. Yip and R. F. Sincovec, “Solvability, controllability and observability of continuous descriptor systems,” IEEE Trans. Automat. Contr., vol. 26, pp.702-706, 1981.
[22] C. Lin, X. K. Xie, “Controllable and observable modes of singular systems,” Proc 1995 12 Int Conf Syst Sci, v 1, Systems Theory Control Theory, p 492, 1995
[23] Q. L. Zhang et al., Further comments on “controllability of descriptor systems,” Interna., J. Control, vol. 50, pp. 2645-2646, 1989.
[24] M. Hou and P. C. Müller, “Causal observability of descriptor systems,” IEEE Trans. Automat. Contr., vol. AC-44, pp.158-163, 1999.
[25] T. Kaczorek, “Sufficient conditions for impulse uncontrollability and impulse unobservability of singular systems,” IEEE Trans. Automat. Contr., vol. AC-33, pp. 1174-1176, 1988.
[26] Chi-Jo Wang, “Controllability and Observability of Linear Time-Varying Singular Systems,” IEEE AC, vol. 44, pp. 1901-1905, 1999.
[27] Chi-Jo Wang and Ho-En Liao, “Impulse observability and impulse controllability of linear time-varying singular systems”, Automatica, vol. 37, pp. 1876-1872, 2001.
[28] J. Wei and W. Song, “Controllability of singular systems with control delay,” Automatica, vol. 37, pp.1873-1877, 2001.
[29] G. Xie and L. Wang, “Controllability of linear descriptor systems,” IEEE CAS I, vol. 50, pp.455-460, 2003.
[30] J. Y. Ishihara and M. H. Terra, “Impulse controllability and observability of rectangular descriptor systems,” IEEE Trans. Automat. Contr., vol. 46, pp. 991-994, 2001.
[31] Y. Z. Hu and E. J. Davison, “A study of the stability radius for descriptor systems,” in Proc. 35th IEEE Conf. Decision Contr., pp. 4256-4261, 1996.
[32] G. C. Verghese, B. C. Levy, and T. Kailath, “A generalized state-space for singular systems,” IEEE Trans. Automat. Contr., vol. 26, pp.811-831, 1981.
[33] Z. Zhou, M. A. Shayman, and T. J. Tam, “Singular systems: A new approach in the time domain,” IEEE Trans. Automat. Contr., vol. 32, pp. 42-50, 1987.
[34] K. Wang and A. N. Michel, “Necessary and sufficient conditions for the controllability and observability of a class of linear time-invariant systems with interval plants,” IEEE Trans. Automat. Contr., vol. 39, pp. 1443-1447, 1994.
[35] F. L. Lewis, “A survey of linear singular systems,” Circuits Syst. Sig. Proc., vol. 5, no. 1, pp. 3-36, 1989.
[36] B. C. Kuo, “Automatic Control System,” Sixth Edition, Prentice Hall, NewJersy, 1991.
[37] B. C. Kuo, “Automatic Control Systems,” Seventh Edition, Wiley, 1997.
[38] G. F. Franklin, J. D. Powell and E. N. Abbas, “Feedback Control of Dynamic Systems,” Third Edition, Addison Wesley, 1994.
指導教授 莊堯棠(Yau-Tarng Juang) 審核日期 2005-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明