以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:64 、訪客IP:3.144.235.138
姓名 邱尉育(Wei-Yu Chiu) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 積體化整合光分波器與高效能光檢測器並將其應用於波長多工系統
(Monolithical Integration of Optical Demultiplexer with the High-Performance Photodetectors for WDM Application)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 由於光纖通訊具有低損耗,高安全性及高速傳遞速度的特性,在最近幾年引起相當大的興趣,而"光纖到家"系統將在未來將扮演相當重要的角色,在整個光纖到家的系統中主要的關鍵零組件為分波器與光檢測器,因此要提高此系統的效能,高效率的分波器與光檢測器是相當必要的。我們將採用新的結構來改善這些光檢測器的效能。除此之外,為了降低光損耗跟成本,我們將利用所謂單石積體化將此兩個獨立的元件整合在一起,並導入創新的光子晶體技術使其有更大的應用空間。在第二章中,我們利用部份掺雜的的光吸收層來改進光檢測器的效果,使其能在不犧牲光響應度的情況下能得到最大飽和電流,我們利用部份掺雜的光檢測器結合洩漏式波導與布拉格反射器,可以使得元件能同時達到高響應度,高飽和電流及高頻率響應的效果,同時也大大降低因為崩裂位置問題造成對響應度的影響。
在第三章中,我們利用漸變式掺雜的集極來完成所謂電荷補償式的單載子光檢測器,此種光檢測器具有高輸出電流及高速的特點,同時我們利用BPM 軟體設計了一個單模傳播的波導結構,並且利用新的雙階式漸耦合光波導來避免崩裂問題造成響應度下降的問題,此種波導將被利用來設計分波器,最後我們將電荷補償式的單載子光檢測器與分波器整合,成功的將1530nm及1550nm波長分開並且將載在波長上的類比訊號跟射頻訊號由不同的光檢測器萃取出來。在第四章中,我們首先利用平面波展開法來計算光子晶體的能帶並且有限時域差分法來模擬光在光子晶體中的傳播情形,利用這些結果我們成功的在SOI上設計出環型振盪器,為了克服在SOI上製作環型振盪器的缺點,我們利用改變光子晶體半徑形成共振腔的方式來達到濾波器的效果,最後我們成功的將光子晶體與部份掺雜的光檢測器結合結合在一起,達到單石積體化的目標。第五章中,我們將針對實驗結果作出結論。摘要(英) In recent year, the optical fiber communication attracts a lot of the attention due to the several advantages of low optical loss, high data rate and high safety. The Fiber-To-The-Home (FTTH) system will play a very important role in the future. In the FTTH system, the wavelength division multiplexer (WDM) and the photodetector are the key components. We will adopt the novel structure to improve the performance of the photodetector. Besides, the monolithically integration will be used to combine the two independent devices for the decrease of the optical loss and cost. Finally, the photonic crystal technology will be used for more application. In the chapter 2, the partially p-doped absorption layer is adopted to improve the performance of the photodetector. This design can increase the maximum saturation current without sacrificing the responsivity. By integrating a partially p-doped PD with a leaky optical waveguide and the Distributed Bragg Reflector (DBR), the performance of the high responsivity, high saturation current and high frequency response can be achieved. At the same time, the tolerance of the cleaving process can be greatly increased. In the chapter 3, we demonstrate charge compensated uni-traveling-carrier photodiodes (UTC-PDs) by a gradually doping collector. The charge compensated UTC-PD owns the high saturation current and high speed performance. Besides, the single mode propagation waveguide is designed by the BPM software. The novel optical waveguide is also used to construct the WDM. The integrated passive demultiplexer can separate the incoming 1530nm and 1550nm wavelengths, which are near the wavelengths used for transmitting the digital and video analog signals and the signals can be extracted by the photodetectors. In the chapter 4, the silicon on insulator (SOI) PC ring resonator is demonstrated by the plane wave expansion (PWE) [56], and finite-difference time domain method (FDTD). Although the SOI-PC ring resonator is demonstrated for the application of WDM, but there are some problems in the PC resonator. To overcome the problems of the SOI-PC ring resonator, the channel-drop filter is adopted and the nano-resonant cavity can be formed by optimizing the radius of the nano-holes. Finally, the monolithically integration is demonstrated. In the chapter 5, we will give a conclusion in this thesis. 關鍵字(中) ★ 光檢測器
★ 光子晶體
★ 波長多工
★ 解多工器關鍵字(英) ★ photodetector
★ photonic crystals
★ WDM
★ demultiplexer論文目次 中文摘要 i
Abstract ii
Table of contents iii
List of tables v
List of figures vi
Chapter 1 Introduction 1
1-1 Overview of Optical Fiber Communucation 1
1-2 Outline of the Disseration 3
Chapter 2 Fabrication and Analysis of Partial P-doping Photodiode with Distributed Bragg Reflector 5
2-1 Introduction 5
2-2 Device Structures and Simulation Parameters 6
2-2-1 Design Principle of thr Partial P-doped Photodetector 6
2-2-2 Design Principle of the Waveguide ans Distributed Bragg Reflectoe Structure 10
2-2-3 Epitaxial Structure of the Device 14
2-2-4 Optical Simulation of the Device
2-3 Device Fabrication Process 17
2-4 Measurement System and Performance of the Device 19
2-5 Summary 24
Chapter 3 Monolithica Integration of a Waveguide Demultiplexer with Evanescently Coupled Uni-Traveling-Carrier Photodetectors 26
3-1 Introduction 26
3-2 Design of the Dual-Stage Evanescently Coupled Photodetector 27
3-2-1 The Design of Charge Compensated Evanescently Coupled Photodetector 27
3-2-2 The Design of Dual-Stage Evanescently Coupled Waveguide 29
3-3 Design Principle of the Wavelength Demultiplexer 36
3-4 Device Fabrication of the Wavelength Demultiplexer 40
3-5 Measurement System and Measurement Results of the Device 41
3-6 Summary 48
Chapter 4 The Integration of Photonic Crystal Wavelength Demultiplexer and Photondetector for CWDM Application 50
4-1 Introduction 50
4-2 Theorem of Photonic Crystal Structure 51
4-2-1 Periodic Structure and Reciprocal Lattice of Photonic Crystals 51
4-2-2 Brillouin Zone and Bandgap Structure of Photonic Crystals 54
4-2-3 Numerical Calculation Methods of Photonic Crystals 57
4-3 Design and Fabrication of the Photonic Crystal Wavelength Demultiplexer 59
4-3-1 Design of the Photonic Crystal Ring Resonator 59
4-3-2 Fabrication and Measurement Result of the Photonic Crystal Ring Resonator 63
4-3-3 Design and Simulation of the Photonic Crystal Channel-Drop Filter 66
4-4 Fabrication of a Photonic Crystal Wavelength Demultiplexer Integrating with Photodetectors 70
4-5 Measurement Results of the Photonic Crystal Wavelength Demultiplexer Integrating with Photodetectors 72
4-6 Summary 75
Chapter 5 Conclusion 76
5-1 Conclusion 76
Reference 78
Appendix 83
Publication List 103參考文獻 [1] Gerd Keiser, “Optical Fiber Communications”, McGRAW Hill, 2000.
[2] Djafar K. Mynbaev and Lowell L. Scheiner, “Fiber-Optic Communications Technology”, Prentice Hall, 2001.
[3] M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco and A. Y. Cho “Distributed Balanced Photodetectors for Board-Band Noise Suppression,” IEEE Tran. Microwave Theory Tech., vol. 47, pp. 1282-1288, 1999.
[4] A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel and D. Schmidt, “Miniaturized Waveguide-Integrated p-i-n Photodetector with 120GHz Bandwidth and High Responsivity,” IEEE Photon. Tecnol. Lett., vol. 17, pp. 2152-2154, 2005.
[5] S. S. Lo, H. K. Chiu and C. C.Chen “Fabricating Low-Loss Hollow Optical Waveguides via Amorphous Silicon Bonding using Dilute KOH solvent” IEEE Photon. Technol. Lett., vol. 17, pp. 2592-2594, 2005.
[6] C. C. Chen, Y. L. Tsai, C. L. Hsu and J. Y. Chang, “Propagation Loss Reduction of Photonic Crystal Slab Waveguides by Microspheres,” Opt. Express vol. 12, pp. 3934-3939, 2004.
[7] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High -Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, 2004.
[8] L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power High-speed Photodetectors Design, Analysis, and Experiment Demonstration,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1320-1331, 1997.
[9] S. Demiguel, N. Li, X. Li, X. Zheng, J. C. Campbell, H. Lu, and A. Anselm, “Very High Responsivity Evanescently Coupled Photodiodes Integrating a Short Planar Multimode Waveguide for High-Speed Application,” IEEE Photon. Technol. Lett., vol. 15, pp. 1761-1763, 2003.
[10] F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “A asymmetric Ttwin-waveguide High-bandwidth Photodiode using a Lateral Taper Coupler,” IEEE Photon. Technol. Lett., vol. 13, pp. 845-847, 2001.
[11] T. Takeuchi, T. Nakata, K. Makita, and T. Torikai, “A High-Power and High-Efficiency Photodiodes with An Evanescently Coupled Graded-Index Waveguide for 40-Gb/s Applications,” in Proc. OFC 2001, vol. 3, pp.WQ2-1-WQ2-3.
[12] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, 1998.
[13] H. Ito, T. Furuta, S. Kodama, N. Watanabe, and T. Ishibashi. “Inp/InGaAs Uni-Travelling-Carrier Photodiode with 310GHz Bandwidth,” Electronics Letters, vol. 36, pp. 1809-1810, 2000.
[14] M. Achouche, V. Magnin, J. Harari, F. Lelarge, E. Derouin, C. Jany, D. Carpentier, F. Blache, and D. Decoster, “High Performance Evanescent Edge Coupled Waveguide Unitraveling-Carrier Photodiodes for >40-Gb/s Optical Receivers,” IEEE Photon. Technol. Lett., vol. 16, pp. 584-586, 2004.
[15] Y. Muramoto and T. Ishibashi, “InP/InGaAs pin Photodiode Structure Maximising Bandwidth and Efficiency,” Electronics Letters, vol. 39, pp.1749-1750, 2003.
[16] X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A Partially Depleted Absorber Photodiode With Graded Doping Injection Regions,” IEEE Photon. Technol. Lett., vol. 16, pp.2326-2328, 2004.
[17] P. V. Studenkov, F. Xia, M. R. Gokhale, and S. R. Forrest, “Asymmetric Twin Waveguide 1.55指導教授 詹益仁(Yi-Jen Chan) 審核日期 2007-10-9 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare