博碩士論文 93521001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.148.145.130
姓名 杜明賢(Ming-Hsien Tu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 標準元件庫雜訊特性化及電源雜訊抑制電路設計
(Standard Cell Library Noise Characterization and Power Noise Suppression Circuit Design)
相關論文
★ 運算放大器之自動化設計流程及行為模型研究★ 低雜訊輸出緩衝器設計及USB2實體層的傳收器製作
★ 低雜訊輸出緩衝器設計及USB2實體層的時脈回復器製作★ 應用於通訊系統的內嵌式數位訊號處理器架構
★ 應用於數位儲存示波器之100MHz CMOS 寬頻放大器電路設計★ 具有QAM/VSB模式的載波及時序回復之數位積體電路設計
★ 應用於通訊系統中數位信號處理器之模組設計★ 應用於藍芽系統之CMOS射頻前端電路設計
★ 具有QAM/VSB 模式之多重組態可適應性等化器的設計與實現★ 適用於高速通訊系統之可規劃多模式里德所羅門編解碼模組
★ 應用於橢圓曲線密碼系統之低複雜性有限場乘法器設計★ 適用於通訊系統之內嵌式數位訊號處理器
★ 雷射二極體驅動電路★ 適用於通訊系統的內嵌式數位信號模組設計
★ 適用在通訊應用之可參數化內嵌式數位信號處理器核心★ 一個高速╱低複雜度旋轉方法的統一設計架構:角度量化的觀點
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
隨著半導體製造技術的進步,最小特徵尺寸持續降低,而且電路密度逐漸增加。在這個同時,增加的時脈速度要求這些電路有更快的訊號轉換速率。如此,在今天的高速電路中,雜訊產生變得愈來愈嚴重。然而,供應電源電壓的減少代表著更低的電晶體臨界電壓。因此,電路的雜訊邊界變得更小。它會造成大量的訊雜比降低,不管是在數位或是混合訊號電路。因此,電路效能將被雜訊所限制。
在這個論文,我們提供一個能察覺雜訊的標準元件庫。有兩個主要的部份在這個目標,雜訊特性化與抑制雜訊元件設計。在雜訊特性化方面,我們介紹特性化交插耦合雜訊的程序與使用CLKINVX1與NAND2X1來當成特性化例子。我們也討論特性化同時轉換雜訊的方法與呈現一些初步的想法。
在雜訊抑制元件設計方面,我們實現了被動抑制電源雜訊元件,去耦合電容,與一個主動抑制電源雜訊模組。它們可以直接抑制在設計者電路中所發生的電源雜訊。模擬結果顯示,主動抑制電源電路能降低負的電源雜訊峰值達33%,降低正的電源雜訊峰值達44%。最後我們將主動抑制電源雜訊電路與晶片上抖動量測電路做結合。這個結合電路可以讓我們直接觀察主動抑制電源雜訊電路所造成的改善。
摘要(英) Abstract
With advances in semiconductor fabrication technology, the minimum feature size continues to decrease and the circuit density increases gradually. At the same time, increasing clock speeds demands these circuits to switch at faster rates. Thus, noise generation becomes more and more serious in today’s high-speed circuits. Moreover, decreasing power supply voltages dictate lower transistor threshold voltage. Therefore, noise margins of circuits become smaller. It causes a significantly signal-to-noise ratio reduction for both digital and mixed-signal/analog circuits. Therefore, the circuit performance will be limited by noise.
In this thesis, we provide a noise-aware standard cell library. There are two major parts in the subject, noise characterization and noise suppression cell design. On noise characterization, we introduce the procedure to characterize the noise behavior and use CLKINVX1 and NAND2X1 as a characterization example. We also discuss the way to characterize simultaneous switching noise and propose some preliminary ideas.
On noise suppression cell design, we implement the passive power supply noise (PSN) suppression cell, decoupling capacitance, and an active PSN suppression module. They can be used to suppress PSN occurring in design’s circuit. The simulation results appeal that the active PSN suppression circuit can have 33% reduction for negative PSN peak and 44% reduction for positive PSN peak. Finally, we combine the active PSN suppression circuit with an on-chip bounce measurement circuit. This combined circuit can let us observe the improvement due to the active PSN suppression circuit directly.
關鍵字(中) ★ 標準元件庫
★ 雜訊
★ 特性化
關鍵字(英) ★ characterization
★ standard cell library
★ noise
論文目次 Contents
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Introduction 2
1.2.1 Standard Cell Library 2
1.2.2 Noise Characterization 3
1.2.3 Low-Noise Cells and Anti-Noise Modules 4
1.2.4 On-Chip measurement Circuit 5
1.3 Thesis Organization 6
Chapter 2 Cross-Coupling Noise Model and Characterization Flow 7
2.1 Introduction to Cross-Coupling Noise 7
2.2 Cross-Coupling Noise Model in Liberty Format 9
2.2.1 Noise Calculation 10
2.2.2 Noise Immunity 10
2.2.3 Noise Propagation 12
2.3 Cross-Coupling Noise Characterization 13
2.3.1 Cross-Coupling Noise Characterization Flow 13
2.3.2 Generation of Cross-Coupling Noise Glitches 14
2.3.3 Weibull Function 15
2.3.4 Noise Calculation Characterization 23
2.3.5 Noise Immunity Characterization 27
2.3.6 Noise Propagation Characterization 31
2.4 Summary 33
Chapter 3 Simultaneous Switching Noise Model and Characterization 34
3.1 Introduce to Simultaneous Switching Noise 34
3.1.1 Causes of Simultaneous Switching Noise 34
3.1.2 Bounce Behavior of SSN 36
3.1.3 Negative Feedback 39
3.2 Power Supply Noise Estimation Methods 40
3.2.1 Dynamic Estimation Method 41
3.2.2 Static Estimation Method 42
3.2.3 Current Waveform Characterization 45
3.3 The Effects of SSN on Propagation Delay 49
3.3.1 Propagation Delay 49
3.3.2 The characteristics of a SSN Waveform 50
3.3.3 The Characterization of Tp 52
3.4 Summary 54
Chapter 4 Noise-Aware Cell Library 55
4.1 Cross-Coupling Noise and SSN Suppression Methods 55
4.1.1 Cross-Coupling Noise Suppression Methods 55
4.1.2 SSN Suppression Methods 57
4.2 Cell Adjustment for SSN Suppression 59
4.2.1 Sizing Experiment 59
4.2.2 Mixed-Vt Experiment 62
4.3 Coupling Noise Characterization Example 65
4.3.1 Noise Calculation - I-V Curve 65
4.3.2 Noise Propagation 71
4.3.3 Noise Immunity 76
4.4 Passive PSN Suppression Cell - Decoupling Capacitance 80
4.5 Active PSN Suppression Module Design 84
4.5.1 Background and Related Researches 84
4.5.2 Active PSN Suppression Circuit 87
4.5.3 Design and Simulation Results 92
4.5.4 Combine with On-Chip Measurement Circuit 96
4.6 Summary 100
Chapter 5 Conclusions 101
References 103
Appendix A – The Complete Cross-Coupling Noise Characterization Example of CLKINVX1 and NAND2X1 105
參考文獻 References
[1] W. Roethig, “Library Characterization and Modeling for 130 nm and 90 nm SOC Design,” proceedings of the IEEE International SOC Conference, pp. 383–386, Sep. 2003.
[2] R. Hegde and N. R. Shanbhag, “Towards Achieving Energy-Efficiency in Presence of Deep Submicron Noise,” IEEE Trans. on VLSI Systems, vol. 8, no. 4, pp. 379-391, Aug. 2000.
[3] PrimeTime® SI User Guide, Version W-2004.12, December 2004
[4] Library Complier User Guide: Modeling Timing and Power Technology Libraries, Version W-2004.12, December 2004
[5] A. Kasnavi, J. W. Wang, M. Shahram, and J. Zejda., “Analytical modeling of crosstalk noise waveforms using weibull function,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, Nov. 7-11 2004, , pp. 141-146
[6] Y. S. Chang, S. K. Gupta, M. A. Breuer, “Analysis of ground bounce in deep sub-micron circuits,” VLSI Test Symposium, 1997., 15th IEEE, Apr. 27 1997, pp. 110 - 116
[7] Y. M. Jiang, K. T. Cheng, A. C. Deng, “Estimation of Maximum Power Supply Noise for Deep Sub-Micron Designs,” in Proc. Int. Symp. on Low Power Electronics and Design, Aug. 10-12, 1998, pp. 233-238
[8] T. Murayama, K. Ogawa, H. Yamaguchi, “Estimation of peak current through CMOS VLSI circuit supply lines,” Design Automation Conference, vol.1, Jan. 18-21 1999, pp. 295 – 298
[9] Y. J. Wang, “Nanometer CMOS on Chip Serial Link Transmitter”, Master dissertation, Dept. of Electrical Engineering, N.C.U., Taiwan, ROC, July 2005
[10] A. Solomatnikov, D. Somasekhar, N. Sirisantana, and K. Roy., “Skewed CMOS: Noise-tolerant high-performance low-power static circuit family,” IEEE Trans. VLSI Syst., vol. 10, issue: 4, pp. 469-476, Aug. 2002.
[11] L. McMurchie, S. Kio, G. Yee, T. Thorp, and C. Sechen, “Output prediction logic: a high-performance CMOS design technique,” Proc. Intl. Conf. Computer Design, 2000, pp. 247-254
[12] P. Larsson, “Resonance and Damping in CMOS Circuits with On-Chip Decoupling Capacitance,” IEEE Trans. on CAS-I, pp. 849-858, Aug. 1998
[13] S. J. Jou, S. H. Kuo, J. T. Chiu and V. Lin, “Low Switching Noise and Load Adaptive Output Buffer Design Techniques,” IEEE Journal of Solid-State Circuits, vol.36, no.8, pp.1239-1249 (SCI, EI), Aug. 2001
[14] N. R. Shanbhag, ”Reliable and efficient system-on-chip design”, IEEE Computer,. vol. 3, issue: 3, pp. 42-50, March 2004.
[15] Y. W. Chiu, “Standard Cell Library Characterization and Mixed-Threshold Voltage Cell Library Design”, Master dissertation, Dept. of Electrical Engineering, N.C.U., Taiwan, ROC, July 2006
[16] N. H. E. Weste, D. Harris, ”CMOS VLSI Design,” 3rd ed., New York: Addison Wesley, 2005, pp. 773-775
[17] W. Dally and J. Poulton, “Digital Systems Engineering,” Cambridge, UK: Cambridge University Press, 1998
[18] P. Larsson, “Parasitic resistance in an MOS transistor used a on-chip decoupling capacitance,” JSSC, vol. 29, no. 6, June 1994, pp. 723-726
[19] G. Ji, T. Arabi, G. Taylor., et. al., “Design and Validation of a Power Supply Noise Reduction Technique,” Electrical Performance of Electronic Packaging, Oct. 2003
[20] T. J. Gabara, W. C. Fischer, J. Harrington, W. W. Troutman, “Forming damped LRC parasitic circuits in simultaneously switched CMOS output buffers,” IEEE Journal of Solid State Circuits, vol. 32, no.3, pp. 407-418, Mar. 1997
[21] G. Keskin, X. Li and L. Pileggi, “Active Suppression of Power Supply Noise,” published in CICC 2006
[22] M. L. Yu, “Analysis, Design and Measurement of Low-Energy Clocked Storage Element”, Master dissertation, Dept. of Electrical Engineering, N.C.U., Taiwan, ROC, Jan. 2006
指導教授 周世傑、劉建男
(Shyh-Jye Jou、Chien-Nan Liu)
審核日期 2006-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明