博碩士論文 93521005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.144.90.236
姓名 李金龍(Chin-Lung Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 雜訊消除放大器與寬頻矩陣型分佈式放大器暨壓控振盪器之研製
(The Implementations of Noise Canceling Low Noise Amplifier, Wideband Matrix Distributed Amplifier and Voltage Controlled Oscillators)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文係以TSMC 0.18-μm CMOS製程,研製接收機射頻前端電路與相關之被動元件。被動元件的部份主要是探討旁路電容佈局之連線效應,而設計之電路主要包括應用於X頻段之疊接架構功率限制低雜訊放大器、用於Wimax系統之雜訊消除結構低雜訊放大器、適用於超寬頻系統之射頻接地(RF-grounding)寬頻矩陣型分佈式放大器、使用在X頻段之差動壓控振盪器、兩個用於Wimax系統之四相位壓控振盪器,以及用於K頻段之變壓器回授型壓控振盪器。
各電路之量測特性如下:低雜訊放大器:11 GHz疊接低雜訊放大器增益為14.5 dB,雜訊指數為2.8 dB,輸入反射損耗為-11.3 dB,輸出反射損耗為-23.19 dB,而輸入1 dB壓縮點為-13 dB,三階截斷點為+2 dB,總功率消耗21.24 mW;3.5 GHz的雜訊消除低雜訊放大器,增益為10 dB,雜訊指數為3.1 dB,輸入反射損耗為-24 dB,輸出反射損耗為-11 dB,而輸入1 dB壓縮點為-6.5 dB,三階截斷點為+4.5 dB,總功率消耗17.76 mW,若是調整到最佳之消除雜訊偏壓點,雜訊指數可降為2.5 dB;至於射頻接地寬頻矩陣型分佈式放大器,其最小增益為10.4 dB,大於10.4 dB之頻寬範圍為3.6 ~ 16.1 GHz,輸入反射損耗為-4.5 ~ -21 dB,輸出反射損耗在4.5 ~ 16.1 GHz的範圍內,小於-10 dB,最低雜訊指數為6.5 dB,其輸入1 dB壓縮點大於-11.5 dB,三階截斷點大於+1 dB,總功率消耗33.6 mW。壓控振盪器之量測特性:10.7 GHz的壓控振盪器,其頻率可調範圍為220 MHz,輸出功率為-6.44 ~ -4.54 dB,離主頻100 KHz之相位雜訊為-85.22 dBc/Hz,離主頻1 MHz之相位雜訊為-104.13 dBc/Hz,振盪器本身消耗功率為21.6 mW;3.5 GHz的四相位壓控振盪器I,頻率可調範圍為300 MHz,輸出功率為-7.11 ~ -8.71 dB,離主頻100 KHz之相位雜訊為-95 dBc/Hz,離主頻1 MHz之相位雜訊為-122.9 dBc/Hz,振盪器本身消耗功率為18 mW;3.5 GHz的四相位壓控振盪器II,頻率可調範圍為210 MHz,輸出功率為-1.25 ~ -4.02 dB,離主頻100 KHz之相位雜訊為-96.65 dBc/Hz,離主頻1 MHz之相位雜訊為-124.96 dBc/Hz,振盪器本身消耗功率為18 mW;23.7 GHz變壓器回授式壓控振盪器,頻率可調範圍為280 MHz,輸出功率為0.524 ~ 2.31 dB,離主頻1 MHz之相位雜訊為-118.7 dBc/Hz,振盪器本身消耗功率為12 mW。
摘要(英) The thesis describes the passive and active circuits for receiver front end, which are both implemented in TSMC 0.18-μm CMOS technology. The study on passive circuits is about various types of parallel capacitors. The implemented circuits include a cascode power constrained low noise amplifier for X band, a noise canceling low noise amplifier for Wimax applications, an RF-grounding wideband matrix distributed amplifier fo UWB applications, a differential voltage controlled oscillator for X band, two quadrature voltage controlled oscillators for Wimax applications, and a transformer feedback voltage controlled oscillator for K band.
In low noise amplifiers, the 11 GHz cascode power constrained low noise amplifier achieves 14.5 dB power gain, 2.8 dB noise figure, -11.3 dB input return loss, and -23.19 dB output return loss. The 1-dB gain compression point and the input third-order intercept point are -13 dBm and +2 dBm, respectively, and total power consumption is 21.4 mW; The 3.5 GHz noise canceling low noise amplifier achieves 10 dB power gain, 3.1 dB noise figure, -24 dB input return loss, and -11 dB output return loss. The 1-dB gain compression point and the input third-order intercept point are -6.5 dBm and +4.5 dBm, respectively, and total power consumption is 17.76 mW. By using optimum bias, the noise figure is 2.5 dB; The RF-grounding wideband matrix distributed amplifier achieves 10.4 dB power gain from 3.6 to 16.1 GHz. The input return loss is -4.5 ~ -21 dB, and the output return loss is lower than -10 dB from 4.5 to 16.1 GHz. The minimum noise figure is 6.5 dB. The 1-dB gain compression point is higher than -11.5 dBm, the input third-order intercept point is higher than +1 dBm, and total power consumption is 33.6 mW.
In voltage controlled oscillators, the 10.7 GHz differential voltage controlled oscillator has a tuning range of 220 MHz, and the output power is -6.44 ~ -4.54 dBm. The phase noise at 100 KHz and 1 MHz achieve -85.55 dBc/Hz and -104.13 dBc/Hz, respectively, and the power consumption of the VCO core is 3.17 mW; The quadrature voltage controlled oscillator I has a tuning range of 300 MHz, and the output power is -7.11 ~ -8.71 dBm. The phase noise at 100 KHz and 1 MHz achieve -95 dBc/Hz and -122.9 dBc/Hz, respectively, and the power consumption of the VCO core is 18 mW; The quadrature voltage controlled oscillator II has a tuning range of 210 MHz, and the output power is -1.25 ~ -4.02 dBm. The phase noise at 100 KHz and 1 MHz achieves -96.65 dBc/Hz and -124.96 dBc/Hz, respectively, and the power consumption of the VCO core is 18 mW; The 23.7 GHz transformer feedback voltage controlled oscillator has a tuning range of 280 MHz, and the output power is 0.524 ~ 2.31 dBm. The phase noise at 1 MHz offset frequency achieves a -118.7 dBc/Hz, and the power consumption of the VCO core is 12 mW.
關鍵字(中) ★ 旁路電容
★ 高輸出功率
★ 雜訊消除
★ 低雜訊放大器
★ 前饋回授
★ 壓控振盪器
★ 四相位壓控振盪器
★ 限制功率消耗
★ 低相位雜訊
★ 變壓器
★ 射頻接地
★ 分佈式放大器
關鍵字(英) ★ power-constrained
★ noise canceling
★ feed-forward
★ voltage controlled oscillator(VCO)
★ distributed amplifier
★ RF-grounding
★ quadrature VCO
★ transformer
★ low phase noise
★ high output power
★ low noise amplifier(LNA)
★ bypass capacitor
論文目次 中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅴ
目錄 Ⅵ
圖目錄 Ⅸ
表目錄 ⅩIII
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 1
1-3 章節簡述 1
第二章 旁路電容之研究 3
2-1 旁路電容之種類 3
2-2 量測結果與討論 5
第三章 低雜訊放大器 11
3-1低雜訊放大器導論 11
3-2低雜訊放大器之重要參數與MOSFET的雜訊 13
3-2.1 低雜訊放大器之重要參數 13
3-2.2 MOSFET的雜訊 15
3-3 限制功率消耗之11 GHz低雜訊放大器 17
3-3.1 在固定功率消耗時獲得最低雜訊之技巧 17
3-3.2 量測結果與討論 20
3-4 使用雜訊消除機制之3.5 GHz低雜訊放大器 24
3-4.1 利用前饋回授消除雜訊之機制 24
3-4.2 量測結果與討論 29
3-5 射頻接地之寬頻矩陣型分佈式放大器 33
3-5.1 射頻接地之寬頻矩陣型分佈式放大器 33
3-5.2 量測結果與討論 37
第四章 壓控震盪器 42
4-1 壓控振盪器導論 42
4-2 壓控振盪器之重要參數與相位雜訊 45
4-2.1 壓控振盪器之重要參數 45
4-2.2 相位雜訊 46
4-3 差動型壓控振盪器 51
4-3.1 應用於WLAN之10 GHz壓控振盪器 51
4-3.2 量測結果與討論 56
4-4 四相位壓控振盪器 61
4-4.1 四相位信號之產生 61
4-4.2 應用於Wimax系統之四相位壓控振盪器I 63
4-4.3 量測結果與討論 64
4-4.4 應用於Wimax系統之四相位壓控振盪器II 68
4-4.5 量測結果與討論 69
4-5 變壓器回授型之23.7 GHz 壓控振盪器 73
4-5.1 變壓回授式技巧 73
4-5.2 量測結果與討論 76
第五章 結論 80
5-1 結論 80
5-2 未來期許與研究方向 81
參考文獻 82
參考文獻 REFERENCE
[1] D. Zoschg, W. Wilhelm, T. F. Meister, H. Knapp, H.-D. Wohlmuth, K.
Aufinger, M. Wurzer, J. Bock, H. Schafer, and A. Scholtz, “2 dB noise
figure, 10.5 GHz LNA using SiGe bipolar technology,” Electron. Lett.,
vol. 35, no. 25, pp. 2195-2196, Dec. 1999.
[2] H. Knapp, D. Zoschg, T. Meister, K. Aufinger, S. Boguth, and L.
Treitinger, “15 GHz wideband amplifier with 2.8 dB noise figure in SiGe
biploar technology,” in Proc. IEEE RFIC Symp. Dig., pp. 287-290, May 2001.
[3] T. K. K. Tsang and M. N. El-Gamal, “Gain controllable very low voltage
(<1 V) 8-9 GHz integrated CMOS LNAs,” in IEEE RFIC Symp. Dig., pp. 205-
208, June, 2002.
[4] K.-L. Deng, M.-Da. Tsai, C.-S. Lin, K.-Y. Lin, H. Wang, S. H. Wang, W. Y.
Lien and John G. J. Chern, “A Ku-band CMOS Low-Noise Amplifier,” in
IEEE RFIT, pp. 183-186, Dec. 2005.
[5] K.-J. Sun, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A Noise Optimization
Formulation for CMOS Low-Noise Amplifiers With On-Chip Low-Q Inductors,”
IEEE Trans. Microw. Theory Techn., vol. 54, no. 4, pp. 1554-1560, Apr.
2006.
[6] S. Mou, J.-G. Ma, K. S. Yeo, and M. A. Do, “A Modified Architecture Used
for Input Matching in CMOS Low-Noise Amplifiers,” IEEE Trans. on Circuits
and Systems-II: Express Briefs, vol. 52, no. 11, pp. 784-788, Nov. 2005.
[7] K. Han, J. Gil, S.-S. Song, J. Han, H. Shin, C.-K. Kim, and K. Lee,
“Complete High-Frequency Thermal Noise Modeling of Short-Channel MOSFETs
and Design of 5.2-GHz Low Noise Amplifier,” IEEE J. of Solid-State
Circuits, vol. 40, no. 3, pp. 726-735, Mar. 2005.
[8] H.-W. Chiu, S.-S. Lu, and Y.-S. Lin, “A 2.17-dB NF 5-GHz-Band Monolithic
CMOS LNA With 10-mW DC Power Consumption,” IEEE Trans. Microw. Theory
Techn., vol. 53, no. 3, pp. 813-824, Mar. 2005.
[9] L.-J. Lu, H.-H. Hsieh, and Y.-S. Wang, “A Compact 2.4/5.2-GHz CMOS Dual-
Band Low-Noise Amplifier,” IEEE Microwave and Wireless Components
Letters, vol. 15, no. 10, pp. 685-687, Oct. 2005.
[10] S. Asgaran, M. J. Deen, and C.-H. Chen, “A 4-mW Monolithic CMOS
LNA at 5.7 GHz With the Gate Resistance Used for Input Matching,” IEEE
Microwave and Wireless Components Letters, vol. 16, no. 4, pp. 188-190,
Apr. 2006.
[11] A. Bevilacqua, C. Sandner, A. Gerosa, and A. Neviani, “A Fully
Integrated Differential CMOS LNA for 3─5-GHz Ultrawideband Wireless
Receivers,” IEEE Microwave and Wireless Components Letters, vol. 16, no.
3, pp. 134-136, Mar. 2006.
[12] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Generating All Two-
MOS-Transistor Amplifiers Leads to New Wide-Band LNAs,” IEEE J. of Solid-
State Circuits, vol. 36, no. 7, pp. 1032-1040, July 2001.
[13] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-Band CMOS Low-
Noise Amplifier Exploiting Thermal Noise Canceling,” IEEE J. of Solid-
State Circuits, vol. 39, no. 2, pp. 275-282, Feb. 2004.
[14] R. C. Liu, K. L. Deng, and H. Wang, “A 0.6-22-GHz broadband CMOS
distributed amplifier,” in Proc. IEEE RFIC Symp., pp. 103-106, June 2003.
[15] R. C. Liu, C. S. Lin, K. L. Deng, and H. Wang, “A 0.5-14-GHz 10.6dB CMOS
cascode distributed amplifier,” in Proc. IEEE VLSI Circuits Symp, pp.
139-140, June 2003.
[16] M.-D. Tsai, K.-L. Deng, and H. Wang, C.-H. Chen, C.-S. Chang, and J. G.
J. Chern, “A miniature 25-GHz 9-dB CMOS cascaded single-stage
distributed amplifier,” IEEE Microwave and Wireless Components Letters,
vol. 14, no. 12, pp. 554–556, Dec. 2004.
[17] R. E. Amaya, N. G. Tarr, and C. Plett, “A 27 GHz fully integrated CMOS
distributed amplifier using coplanar waveguide,” in Proc. IEEE RFIC
Symp., pp. 193-196, June 2004.
[18] S. Galal and B. Razavi, “40-Gb/s amplifier and ESD protection circuit in
0.18-μm CMOS technology,” in IEEE J. Solid-State Circuits, vol. 39, no.
12, pp. 2389-2396, Dec. 2004.
[19] T.-Y. Chen, J.-C. Chien, and L.-H. Lu, “A 45.6-GHz Matrix Distributed
Amplifier in 0.18-μm CMOS,” in Proc. IEEE Custom Integrated Circuits
Conference (CICC), pp. 119–122, Sep. 2005.
[20] R. C. Liu, C. S. Lin, K. L. Deng, and H. Wang, “Design and Analysis of
DC-to-14-GHz and 22-GHz CMOS Cascode Distributed Amplifiers,” in IEEE J.
Solid-State Circuits, vol. 39, no. 8, pp. 1370-1374, Aug. 2004.
[21] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits,
Cambridge, U.K.: Cambridge Univ. Press, 1998.
[22] L. Jia, J.-G. Ma, K. S. Yeo, and M. A. Do, “9.3-10.4-GHz-Band Cross-
Coupled Complementary Oscillator With Low Phase-Noise Performance,” IEEE
Trans. Microw. Theory Techn., vol. 52, no. 4, pp. 1273–1278, Apr. 2004.
[23] T. K. K. Tsang and M. N. El-Gamal, “A High Figure of Merit and Area-
Efficient Low-Voltage (0.7-1V) 12GHz CMOS VCO,” in Proc. IEEE RFIC
Symp., pp. 89-92, June 2003.
[24] L. Perraud, J.-L. Bonnot, N. Sornin, and C. Pinatel, “Fully-Integrated
10 GHz CMOS VCO for multi-band WLAN applicattions,” in IEEE European
Solid-State Circuits, pp. 353-356, 2003.
[25] N.-J. Oh and S.-G Lee, “11-GHz CMOS Differential VCO With Back-Gate
Transformer Feedback,” IEEE Microwave and Wireless Components Letters,
vol. 15, no. 11, pp.733–735, Nov. 2005.
[26] S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE
Microwave and Wireless Components Letters, vol. 15, no. 10, pp.673–675,
Oct. 2005.
[27] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi,
“A Low-Phase-Noise 5-GHz Quadrature VCO Using Superharmonic Coupling,”
in IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148-1154, July 2003.
[28] H.-R. Kim, and C.-Y. Cha, and S.-M. Oh, M.-S. Yang, and S.-G. Lee, “A
Very Low-Power Quadrature VCO With Back-Gate Coupling,” in IEEE J. Solid-
State Circuits, vol. 39, no. 6, pp. 952-955, June 2004.
[29] J. Y. Chang, C.-H. W, and S.-I. Liu, “A Low-Phase-Noise Low-Phase-Error
2.4GHz CMOS Quadrature VCO,” in Proc. IEEE Asian Solid-State Circuits
Conference, pp. 281–284, Nov. 2005.
[30] A. Fard and P. Andreani, “A Low-Phase-Noise Wide-Band CMOS Quadrature
VCO for Multi-Standard RF Front-Ends,” in Proc. IEEE RFIC Symp., pp. 539- 542, June 2005.
[31] S-M Moon, M-Q Lee, and B-S Kim, “Design of Quadrature CMOS VCO using
Source Degeneration Resistor,” in Proc. IEEE RFIC Symp., pp. 535-538,
June 2005.
[32] P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and Design
of a 1.8-GHz CMOS LC Quadrature VCO,” IEEE J. Solid-State Circuits, vol.
37, no. 12, pp. 1737-1747, Dec. 2002.
[33] A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in
Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2,
pp. 179-194, Feb. 1998.
[34] R. Aparicio and A. Hajimiri, “A Noise-Shifting Differential Colpitts
VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec.
2002.
[35] A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differentail LC
Oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724,
May 1999.
[36] E. Hegazi, H. Sjoland, and A. A. Abidi, “A Filtering Technique to Lower
LC Oscillator Phase Noise,” IEEE J. Solid-State Circuits, vol. 36, no.
12, pp. 1921-1930, Dec. 2001.
[37] P. Andreani and S. Mattisson, “On the Use of MOS Varactors in RF VCO’
s,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[38] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise
Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759,
May 1997.
[39] G. Gonzalez, 1996, Microwave Transistor Amplifiers Analysis and Design,
2nd ed. Prentice-Hall, Inc.
[40] B. Razivi, 1997, RF Microelectronics, Prentice Hall PTR.
[41] C. R. C. De Ranter, M. S. J. Steyaert, “A 0.25-μm CMOS 17 GHz VCO,” I.
Solid-State Circuits, session 23, pp. 370-371, Feb 2001.
[42] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz Integrated CMOS
Frequency Sources with a Quadrature VCO using Transformers,” in Proc.
IEEE RFIC Symp., pp. 269-272, June 2004.
[43] T.-P. Wang, R.-C. Liu, H.-Y. Chang, L.-H. Lu, and H. Wang, “A 22-GHz
Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microwave
and Wireless Components Letters, vol. 15, no. 12, pp. 859–861, Dec. 2005.
[44] Alan W.L. Ng, Gerry C.T. Leung, Ka-Chun Kwok, Lincoln L.K. Leung, Howard
C. Luong, “A 1V 24GHz 17.5mW PLL in 0.18 μm CMOS,” I. Solid-State
Circuits, session 8, pp. 158-160, Feb. 2005.
[45] J. J. Rael and A. A. Abidi, “Physical Process of Phase Noise in
Differential LC Oscillators,” IEEE Custom Integrated Circuits
Conference, pp. 569-572, May 2000.
[46] T. Song, S. Ko, D.-H. Cho, H.-S. Oh, C. Chung, and E. Yoon, “A 5GHz
Transformer-Coupled CMOS VCO Using Bias-Level Shifting Technique,” in
Proc. IEEE RFIC Symp., pp. 127-130, June 2004.
[47] 林正杰,“應用於寬頻劃碼多工進階及雙頻無線區域網路之射頻收發機研製,”碩士論
文, 2004, 國立中央大學。
[48] 劉偉正, “應用於ISM與Ka頻段之射頻收發機前端電路研製,” 碩士論文, 2004, 國
立中央大學。
[49] 杜信龍, “無線收發機前端電路與相關被動電路之研製,” 碩士論文, 2005, 國立中
央大學。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2006-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明