博碩士論文 93521007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.144.89.42
姓名 鄒育霖(Yu-Lin Zou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 Ka頻段低相位雜訊雙推式振盪器之研製
(Study on Ka-band Low Phase Noise Push-Push Oscillator)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文所研究的內容為微波振盪器之積體電路設計,為降低高頻振盪器的相
位雜訊,論文使用雙推式振盪器架構,並且以理論證明此架構確實可有效改善相
位雜訊。使用WIN pHEMT 0.15-μm 製程的電路包括(1)Ka-頻段基頻壓控振盪
器,振盪頻率為24.97 GHz,可調頻率範圍270 MHz,偏移主頻1 MHz 之相位雜
訊為-96.84 dBc/Hz;(2)Ku-頻段有限接地之共面波導基頻振盪器,振盪頻率14.75
GHz,偏移主頻1 MHz 之相位雜訊為-118.96 dBc/Hz,優化指數(FOM)為-191.8
dBc/Hz ;(3)Ka-頻段有限接地之共面波導雙推式振盪器,振盪頻率為30.3 GHz,
偏移主頻1MHz 之相位雜訊為-113.2 dBc/Hz,優化指數為-188.16 dBc/Hz 。最後
是使用TSMC CMOS 0.18-μm 製程所實現的(4)Ka-頻段交互耦合之雙推式壓控振
盪器,振盪頻率為26.7 GHz,可調頻率範圍為1.95 GHz,偏移主頻1 MHz 之相
位雜訊為-117.5 dBc/Hz。且此電路展現出優異的優化指數為-199.82 dBc/Hz。
摘要(英) The content of this thesis is about microwave oscillator integrated circuit design.
The push-push oscillator topology is used in this thesis to lower phase noise of high
oscillation frequency oscillator. General phase noise theory on push-push oscillator is
developed to prove it’s naturally having low phase noise property. WINTM pHEMT
0.15-μm technology is adopted to implement:(1) Ka-band fundamental VCO. The
oscillation frequency is 24.97 GHz, tuning range is 270 MHz, and phase noise is
-96.84 dBc/Hz at 1MHz offset;(2) The second circuit is a Ku-band Finite Ground (FG)
CPW fundamental oscillator. The oscillation frequency is 14.75 GHz, phase noise is
-118.96 dBc/Hz at 1 MHz offset, and -191.8 dBc/Hz of Figure-of-Merit(FOM);(3)
The third circuit is a Ka-band FG CPW push-push oscillator. The oscillation
frequency is 30.3 GHz, phase noise is -113.2 dBc/Hz at 1MHz offset, and FOM is
-188.16 dBc/Hz. Finally, TSMC CMOS 0.18-μm technology is adopted to implement
the fourth circuit which is a Ka-band cross-coupled push-push VCO. The oscillation
frequency is 26.7 GHz, tuning range is 1.95 GHz, phase noise is -117.5 dBc/Hz at
1MHz offset and exhibited an excellent FOM of -199.82 dBc/Hz.
關鍵字(中) ★ 雙推式 關鍵字(英) ★ push push
論文目次 目錄
第一章、緒論 1
1-1、研究動機 1
1-2、研究成果 1
1-3、章節概述 2
第二章、微波光子接收機之本地端電路研製 3
2-1、毫米波收發機簡介 3
2-2、WIN GaAs 0.15-μm pHEMT 製程技術簡介 4
2-3、振盪器原理分析 5
2-3-1、巴克豪森振盪原理分析 6
2-3-2、負電阻振盪原理分析 8
2-3-3、電晶體之穩定度分析 13
2-4、相位雜訊理論分析 16
2-4-1、相位雜訊之定義 16
2-4-2、相位雜訊對射頻通訊系統之影響 17
2-4-3、雷森公式理論 18
2-4-4、時變相位雜訊模型的建立 20
2-4-5、改善相位雜訊之方式 26
2-5、Ka-頻段基頻壓控振盪器設計 28
2-5-1、電路架構及設計原理分析 28
2-5-2、Ka-頻段基頻壓控振盪器之量測結果 31
第三章、低相位雜訊之雙推式振盪器設計 34
3-1、雙推式振盪器簡介 34
3-1-1、架構簡介 34
3-1-2、雙推式模態之理論 35
3-1-3、架構比較 38
3-2、雙推式振盪器架構之相位雜訊分析 40
V
3-2-1、相位雜訊模型之建立 40
3-3、有限接地共平面波導之基頻與雙推式振盪器設計 43
3-3-1、Ku-頻段基頻振盪器電路之架構及設計流程 43
3-3-2、Ku-頻段基頻振盪器之量測結果 45
3-3-3、Ka-頻段雙推式振盪器之實現及量測結果 47
3-3-4、基頻振盪器與雙推式振盪器之結果討論 51
第四章、應用於Ka 頻段之CMOS雙推式壓控振盪器設計 55
4-1、CMOS 電晶體模型分析 55
4-2、Ka-頻段CMOS 交互耦合之雙推式振盪器架構理論分析 58
4-2-1、子電路架構之比較 58
4-2-2、Ka-頻段CMOS 交互耦合雙推式壓控振盪器設計原理與流程 59
4-2-3、NP 互補式交互耦合雙推式振盪器架構之時變相位雜訊模型 63
4-3、Ka-頻段CMOS 交互耦合雙推式壓控振盪器之量測結果 70
4-4、晶片之結果與討論 74
第五章、結論 78
5-1、論文重點 78
5-2、論文貢獻 79
5-3、未來研究 79
參考文獻 80
參考文獻 參考文獻
[1] N. Nguyen,.M.Meyer, and R.G.;” Start-up and frequency stability in high-frequency oscillators,”
Solid-State Circuits, IEEE Journal of Volume 27, Issue 5, May 1992 Page(s):810 – 820.
[2] Guillermo Gonzalez, Microwave Transistor Amplifiers Analysis and Design Second Edition,
Prentice Hall 1997.
[3] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J.
Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[4] M. Grozing, T. Stumpf, S. Hanger, andM. Betroth, “MOSFET thermal- and 1/f-noise modulating
functions for the impulse sensitivity function theory of oscillator phase noise Microwave
Conference,” 2004. 34th European Volume 2, 13 Oct. 2004 Page(s):949 - 952
[5] Y. Tang and H. Wang, “Triple-push oscillator approach: Theory and experiments,” IEEE J.
Solid-State Circuits, vol. 36, no. 10, pp. 1472–1479,Oct. 2001
[6] R. G. Freitag, S. H. Lee, D. M. Krafcsil, D. E. Dawson, and J. E. Degenford, ‘Stability and
improved circuit modeling considerations for high power MMIC amplifiers,” I988 IEEE MTT-S
International Microwave Symposium Digest, New York, NY, pp. 125-128, May, 1988.
[7] Ronald. Freitag “A Unified Analysis of MMIC Power Amplifier Stability,” 1992 IEEE MTT-S
Digest.
[8] J. E. Post, Jr., I. R. Linscott, and M. H. Oslick, “Waveform Symmetry Properties and Phase Noise
in Oscillators,” Electron. Letter, vol. 34, no. 16, pp. 1547-1548, August 1998.
[9] Sunkyu Choi, Yongsik Jeong, and Kyounghoon Yang”Low DC-Power Ku-Band Differential VCO
Based on an RTD/HBT MMIC Technology,” IEEE Microwave and Wireless Components Letters,
Vol. 15,No. 11, Nov. 2005
[10] D. Baek, S. Ko, J. Kim, D. Kim, and S. Hong ,“Ku-band InGaP-GaAs HBT MMIC VCOs with
balanced and differential topologies,” IEEE Trans. Microwave. Theory Tech., vol. 52, no. 4, pp.
1353–1359, Apr. 2004.
[11] V. Manan, S.I. Long,” A low power and low noise p-HEMT ku band VCO,” IEEE Microwave and
Wireless Components Letters, VOL. 16, NO. 3, Mar. 2006
[12] T.K.K.Tsang; M.N El-Gamal,”A high figure of merit and area-efficient low-voltage (0.7-1 V) 12
GHz CMOS VCO,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE 8-10
June 2003 Page(s):89 - 92
[13] Nam-Jin Oh; Sang-Gug Lee “11-GHz CMOS differential VCO with back-gate transformer
feedback,”Microwave and Wireless Components Letters, IEEE see also IEEE Microwave and
Guided Wave Letters Volume 15, Issue 11, Nov. 2005 Page(s):733 – 735
[14] Yi-Jan Emery Chen, Wei-Min Lance Kuo, Jongsoo Lee, John D. Cressler Joy Laskar, and Greg
Freeman,”A Low-Power Ka-Band Voltage-Controlled Oscillator Implemented in 200-GHz SiGe
HBT Technology,” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5,
May 2005.
81
[15] To-Po Wang , Ren-Chieh Liu, Hong-Yeh Chang , Liang-Hung Lu and Huei Wang,”A 22-GHz
Push-Push CMOS Oscillator using Micro-machined Inductors,” IEEE Microwave and Wireless
Component Letter, Vol. 15, No. 12, December 2005.
[16] Belinda Piernas, and Kenjiro Nishikawa,”A Compact and Low-Phase-Noise Ka-Band
pHEMT-Based VCO,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No.
3, March 2003.
[17] J. Lin, K. Y. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, A. Tate, R. F. Kopf, and R. W.
Ryan, “Ka-band monolithic InGaAs/InP HBT VCO’s in CPW structure,” IEEE Microw. Guided
Wave Lett., vol. 5, no.11, pp. 379–381, Nov. 1995.
[18] Xiao, H.; Tanaka, T.; Aikawa, M.”A Ka-band quadruple-push oscillator,” Microwave Symposium
Digest, 2003 IEEE MTT-S International Volume 2,8-13 June 2003 Page(s):889 - 892 vol.2
[19] Pietro Andrean , Xiaoyan Wang , Luca Vandi , and Ali Fard “A Study of Phase Noise in Colpitts
and LC-Tank CMOS Oscillators,” IEEE Jounal ot Solid-State Circuits, Vol. 40, No. 5, May 2005.
[20] Pietro Andreani, and Xiaoyan Wang ,“On the Phase-Noise and Phase-Error Performances of
Multiphase LC CMOS VCOs,” IEEE Jounal ot Solid-State Circuits, VOL. 39, NO. 11, Nov. 2004.
[21]鄒育霖 ”Ka與V頻段低相位雜訊雙推式振盪器之研製碩士論文”,中央大學,2006
[22] To-Po Wang, Ren-Chieh Liu, Hong-Yeh Chang, Liang-Hung Lu, and Huei Wang, “A 22-GHz
Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microwave and Wireless
Components Letters, VOL. 15, NO. 12, December 2005
[23] Yi-Hsien Cho, Ming-Da Tsai, Hong-Yeh Chang, Chia-Chi Chang, Huei Wang. “A Low Phase
Noise 52GHz Push-Push VCO in 0.18mm Bulk CMOS Technologies,” 2005 IEEE Radio
Frequency Integrated Circuits Symposium.
[24] Ping-Chen Huang, Ren-Chieh Liu, Hong-Yeh Chang, Chin-Shen Lin, Ming-Fong Lei, Huei Wang,
Chia-Yi Su', and Chia-Long Chang “A 131 GHz Push-push VCO in 90-nm CMOS Technology,”
2005 IEEE Radio Frequency Integrated Circuits Symposium.
[25] Ming-Da Tsai, Yi-Hsien Cho, and Huei Wang, “A 5-GHz Low Phase Noise Differential Colpitts
CMOS VCO” IEEE Microwave and Wireless Components Letters, Vol. 15, No. 5, May 2005.
[26] KaChun Kwok and Howard C. Luong, Senior Member, IEEE ”Ultra-Low-Voltage
High-Performance CMOS VCOs Using Transformer Feedback,” IEEE Journal of Solid-State
Circuits, Vol. 40, No. 3, March 2005.
[27] C.C. Meng, C.H. Chen, Y.W. Chang and G.W. Huang “5.4 GHz -127 dBc/Hz at 1MHz
GaInP/GaAs HBT quadrature VCO using stacked transformers,” Electronics Letters 4th August
2005 Vol. 41 No. 16.
[28] C. C. Meng, Y. W. Chang, and S. C. Tseng ”4.9-GHz Low-Phase-Noise Transformer-Based
Superharmonic-Coupled GaInP/GaAs HBT QVCO,” IEEE Microwave and Wireless Components
Letters.
[29] Behzad Razavi,”A Study of Phase Noise in CMOS Oscillator,” IEEE Journal of Solid-State
Circuits, VOL. 31, NO. 3, March 1996.
82
[30] Emad Hegazi ,Henrik Sjöland, and Asad A. Abidi. ”A Filtering Technique to Lower LC Oscillator
Phase Noise” IEEE Journal of Solid-State Circuits, Vol. 36, No. 12, December 2001.
[31] 劉偉正, “ 應用於ISM 與Ka 頻段之射頻收發機前端電路研製,” 碩士論文,中央大學,2004
[32] 陳一嘉, “ 5.5/14 GHz 壓控振盪器與髮夾式/環型耦合濾波器之研製” 碩士論文,中央大
學,2005.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明