博碩士論文 93521031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.222.162.14
姓名 羅嘉和(Jia-Her Luo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 適用於MPEG-2/4 AAC編碼器的低複雜度MDCT-based聲學模型協同處理器設計與VLSI實現
(Design and VLSI Implementation of Low Complexity MDCT-based Psychoacoustic-Model Co-Processor for MPEG-2/4 AAC Encoder)
相關論文
★ 即時的SIFT特徵點擷取之低記憶體硬體設計★ 即時的人臉偵測與人臉辨識之門禁系統
★ 具即時自動跟隨功能之自走車★ 應用於多導程心電訊號之無損壓縮演算法與實現
★ 離線自定義語音語者喚醒詞系統與嵌入式開發實現★ 晶圓圖缺陷分類與嵌入式系統實現
★ 語音密集連接卷積網路應用於小尺寸關鍵詞偵測★ G2LGAN: 對不平衡資料集進行資料擴增應用於晶圓圖缺陷分類
★ 補償無乘法數位濾波器有限精準度之演算法設計技巧★ 可規劃式維特比解碼器之設計與實現
★ 以擴展基本角度CORDIC為基礎之低成本向量旋轉器矽智產設計★ JPEG2000靜態影像編碼系統之分析與架構設計
★ 適用於通訊系統之低功率渦輪碼解碼器★ 應用於多媒體通訊之平台式設計
★ 適用MPEG 編碼器之數位浮水印系統設計與實現★ 適用於視訊錯誤隱藏之演算法開發及其資料重複使用考量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 音訊編碼的技術是我們生活中重要的一個部份,每一天人們從廣播、iPod、和手機中聽著他們喜愛的歌曲,而自從MP3風糜了全世界以後,MPEG組織在音訊編碼的技術上又推出新MPEG-2/4 AAC,來當成下一代新的音訊壓縮標準
在本篇論文中,我們最主要針對MPEG-2/4 AAC編碼器中之關鍵的元件設計,使得整個MPEG-2/4編碼器可以用在可攜式的電子產品。
聲學模型 Psychoacoustic Model (PAM)在MPEG-2/4編碼器扮演著一個非常重要的角色,由於他的運算複雜度相當的高使得它實現在低功率且要求即時編碼的可攜性的電子產品上仍有一定的難度,為了克服這一個問題,我們提出了一個專門加速聲學模型運算的協同處理器,在演算法上,我們使用以MDCT-based的聲學模型、將spreading function用查表的方式和以對數為基礎的資料來計算聲學模型的運算式以達到減少運算量和複雜的運算元,我們並且提出了以對數為基礎來運算Quantization Loop(Q Loop)中的運算以減少了PAM和Q Loop中的刻度轉換所須的複雜運算並簡化Q Loop中乘法和除法的運算;在架構上,我們用一個pipelining的MDCT與DSP-like的架構來計算整個PAM,本論文之架構以台積電0.18 CMOS製程實現,總共使用了28349個邏輯閘,整個設計能與一個MOPS低於7的DSP和ARM來即時編碼MPEG-2/4 AAC音訊資料。
摘要(英) Audio technology is an important part in our life. Everyday, people listen to their favorite songs from broadcast、iPod、cellular phone…etc. After the MP3 very popular in the world, the MPEG organization proposed MPEG-2/4 AAC to be the next generation audio standard. In this thesis, we will present the key component design for MPEG-2/4 encoder of the portable device.
Psychoacoustic Model (PAM) as the key component in the MPEG-2/4 AAC encoder. It occupies the heavy computation load in AAC encoder and makes the AAC encoder hard to be implemented on the portable device under the real-time and low power condition. In order to overcome the above described problem, we proposed a dedicated co-processor design to speedup computation of the PAM. In algorithm level, the MDCT-based PAM、the look-up table of the spreading function ,the log-scale table of the Threshold Generator (TG) calculation are adopt to this design. Besides, logarithmic based Quantization Loop (Q Loop) algorithm is proposed to solve the scale and complexity computation problem between PAM and Q Loop. In architecture level, the pipelined MDCT and DSP-like architecture are proposed for the high efficient and low complexity consideration, respectively. The proposed PAM architecture is implemented in the TSMC 0.18 CMOS technology, total gate count is 28349. The proposed architecture can encoding stereo content with the DSP or the RISC, whose MOPS below 7 MOPS at sampling rate 44.1k and bitrate 128kbit/s.
關鍵字(中) ★ 先進編碼器
★ 聲學模型
★ MPEG
關鍵字(英) ★ Advanced Audio coding
★ Psychoacoustic-Model
★ MPEG
論文目次 Content..................................................................ii
List of Figures..........................................................iv
List of Tables...........................................................vi
Chapter 1 Introduction...............................................1
1.1 Brief history and feature of MPEG audio standards..........1
1.2 The MPEG-2/4 AAC Encoding System...........................4
1.3 Recent Developments: HE-AAC v1 Encoding System.............5
1.4 Recent Developments: HE-AAC v2 Encoding System.............6
1.5 Motivation.................................................7
1.6 Thesis Organization........................................8
Chapter 2 THE Fundamentals of MPEG-2/4 AAC Encoder.................11
2.1 Psychoacoustic Model......................................14
2.2 Modified Discrete Cosine Transform........................19
2.2.1 Window Shape Adaptation.........................................20
2.2.2 Block Type Decision.............................................20
2.3 Temporal Noise Shaping....................................22
2.4 Joint Stereo Coding.......................................22
2.5 Quantization Loop.........................................23
Chapter 3 Low Complexity PAM Algorithm and The Logarithmic Based
Q Loop...................................................26
3.1 MDCT-Based PAM............................................26
3.2 The Logarithmic-Based Q Loop Algorithm....................30
Chapter 4 The Architecture of The Low Complexity Psychoacoustic
Model....................................................32
4.1 Architecture of Input Buffer..............................34
4.2 Design of MDCT............................................35
4.2.1 The Algorithm of MDCT...........................................35
4.2.2 The Architecture of MDCT........................................37
4.3 Design of TG..............................................39
4.4 Low power and Low Area Logarithmic Hardware...............42
4.3.1 48-bit Leading-One Detector.....................................43
4.3.2 Algorithm and Circuit of 6-Region Compensation Circuit..........46
Chapter 5 Implementation and Result................................49
5.1 Test Coverage.............................................50
5.2 Comparisons...............................................51
5.3 Chip Layout and Summary...................................53
Chapter 6 Conclusions..............................................54
References...............................................................56
參考文獻 [1] MPEG. Coding of moving pictures and associated audio for digital storage media at up to 1.5 Mbit/s, part 3: Audio, International Standard IS 11172-3, ISO/IEC JTC1/SC29 WG11, 1992.
[2] MPEG. Information Technology – generic coding of moving pictures and associated audio, part 3: Audio, International Standard IS 13818-3, ISO/IEC JTC1/SC29 WG11, 1994.
[3] MPEG. MPEG-2 Advanced Audio Coding, AAC, International Standard IS
13818-7, ISO/IEC JTC1/SC29 WG11, 1997.
[4] MPEG. Information technology – Coding of audio-visual objects – Part 3: Audio, International Standard IS 14496-3, ISO/IEC JTC1/SC29 WG11, 1999.
[5] MPEG. Information technology – Coding of audio-visual objects – Part 3: Audio, Amendment 1: Bandwidth extension. ISO/IEC 14496-3:2001/Amd. 1:2003, Nov. 2003.
[6] MPEG Information technology – Coding of audio-visual objects – part 3: Audio, Amendment 2: Parametric coding for high-quality audio, ISO/IEC 14496-3/Amd. 2: 2004.
[7] Yuichiro Takamizawa, Toshiyuki Nomura, Masao Ikekawa, “High-quality and processor-efficient implementation of an MPEG-2 AAC encoder,” in Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp. 985 –988.
[8] D. H. Kim, D. H. Kim, J. H. Chung, “Optimization of MPEG-4 GA AAC on general PC,” in Proc. of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, vol. 2, pp.923-925.
[9] I. Dimkoviae, D. Milovanoviae, Z. Bojkoviae, “Fast software implementation of MPEG advanced audio encoder,” in Proc. of the 2002 14th International Conference on Digital Signal Processing, vol. 2, pp.839 –843.
[10] Lohwasser, Markus; Gayer, Marc; Lutzky, Manfred; “Implementing MPEG Advanced Audio Coding and Layer-3 Encoders on 32-bit and 16-bit Fixed-point Processors”, in AES 115th Convention 2003 October 10-13 New York, New York
[11] Domazet, D., Kovac, M., “Advanced software implementation of MPEG-4 AAC audio encoder”, 4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications, 2003. Volume 2, 2-5 July 2003 pp.:679 - 684 vol.2
[12] Shih-Way Huang; Liang-Gee Chen; Tsung-Han Tsai; “Memory and Computationally Efficient Psychoacoustic Model for MPEG AAC on 16-bit Fixed-point Processors” Circuits and Systems, 2005. ISCAS 2005. Symposium on IEEE International 23-26 May 2005 pp.3155 – 3158.
[13] D. Huang, X. Gong, D. Zhou, T. Miki, S. Hotani, “Implementation of the
MPEG-4 Advanced Audio Coding encoder on ADSP-21060 SHARC,” in Proc. of the 1999 IEEE International Symposium on Circuits and Systems, vol. 3, pp.544 –547.
[14] Y. Takamizawa, T. Okumura, T. Nomura, M. Ikekawa, and I. Kuroda, “20mW MPEG-2/4 AAC LC stereo encoder on a 16-bit DSP,” presented at the Workshop and Exhibition on MPEG-4, San Jose, California, June 25-27 2002.
[15] Duenas, Alberto, Perez, Rafael, Rivas, Begona, Alexandre, Enrique, Pena, Antonio, “A Robust and Efficient Implementation of MPEG-2/4 AAC Natural Audio Coders”, in AES 112th Convention 2002 May 10-13 Munich, Germany
[16] Pena. Antonio, Alexandre. Enrique, Rivas. Begona, Perez. Rafael, Duenas. Alberto;” Realtime implementations of MPEG-2 and MPEG-4 natural audio coders”, in AES 110th Convention 2001 May 12-15 Amsterdam, The Netherlands
[17] Romain Pagniez, “Port of a Fixed Point MPEG2-AAC Encoder on a ARM
Plateform”, Master of Science Computational Science, University College
Dublin, Master thesis, 2004
[18] http://www.iis.fraunhofer.de/amm/techinf/audio_dsp/ti.html
[19] Yan-Chen Lu, Chun-Fu Shen, Chi-Kuang Chen, “A novel hardware accelerator architecture for MPEG-2/4 AAC encoder”, 2004 IEEE International Conference on Multimedia and Expo, 2004. ICME '04. Volume 2, 27-30 June 2004 pp.1139 - 1142 Vol.2
[20] M. Kahrs, K. Brandenburg, Applications of digital signal processing to audio and acoustics. Kluwer Academic Publishers, 1998, pp.59.
[21 ] Yi-Wei Wang, “Design and VLSI implementation for Psychoacoustic Model in MPEG-2/4 Advance Audio coding,” Department of Electrical Engineering National Central University Chung-Li; Master thesis, 2004
[22] C. Liu, C. Chen, W. Lee, S. Lee, “A fast bit allocation method for MPEG layer
III,” in Proc. of the 1999 IEEE International Conference on Consumer
Electronics, pp.22-23.
[23] C. Liu, W. Lee, R. Hong, “A new criterion and associated bit allocation method for current audio coding standards,” in Proc. of the 5th Int. Conference on Digital Audio Effects (DAFX-02), Hamburg, Germany, Sep. 26-28, 2002, pp.233-237.
[24] C. Liu, W. Lee, C. Chien, “Bit allocation for advanced audio coding using bandwidth-proportional noise-shaping criterion,” in Proc. of the 6th Int. Conference on Digital Audio Effects (DAFX-03), London, UK, Sep. 8-11, 2003.
[25] C. Yang, S. Chen, “New static and dynamic search algorithms for fast MP3 bit allocations,” in Proc. of the 2003 IEEE International Conference on Multimedia and Expo, vol. 1, pp.77-80.
[26] H. Oh, J. Kim, C. Song, Y. Park, D. Youn, “Low power MPEG/audio encoders using simplified psychoacoustic model and fast bit allocation,” IEEE Transactions on Consumer Electronics, vol. 47, no. 3, pp.613 –621, Aug. 2001.
[27] J. Princen and Bradley, “Analysis / Synthesis Filter Bank Design Based on Time Domain Aliasing Cancellation,” IEEE Trans, ASSP, vol. ASSP-34, no.5, pp.1153-1161, Oct. 1986.
[28] J. Herre, J. D. Johnston, “Enhancing the Performance of Perceptual Audio Coder by Using Temporal Noise Shaping (TNS)”, Proc. 101st AES Conv., Los Angeles Nov 1996.
[29] J. Herre, “Temporal Noise Shaping, Quantization and Coding Method in Perceputal Audio Coding: A Tutorial Introduction”, AES 17th Int. Conf on High Quality Audio Coding
[30] Shih-Way Huang, Tsung-Han Tsai, Liang-Gee Chen, “A low complexity design of psycho-acoustic model for MPEG-2/4 advanced audio coding”, IEEE Transactions on Consumer Electronics Volume 50, Issue 4, Nov. 2004 pp.1209 - 1217 Digital Object Identifier 10.1109/TCE.2004.1362521
[31] Shih-Way Huang, Liang-Gee Chen, Tsung-Han Tsai, “Memory and Computationally Efficient Psychoacoustic Model for MPEG AAC on 16-bit Fixed-point Processors” Symposium on IEEE International Circuits and Systems, 2005. ISCAS 2005. 23-26 May 2005 pp.3155 – 3158.
[32] Po-sheng Wu; Yin-Tsung Hwan; “Efficient IMDCT core designs for audio signal processing”, IEEE Workshop on Signal Processing Systems, 2003, SIPS 2003. 27-29 Aug. 2003 pp.275 – 280
[33] P. Duhmel, Y. Mahieux, and J.P. Petit, “A fast algorithm for the implementation of filter banks based 1on ‘time domain aliasing cancellation’ “, International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, pp.2209-2212, Apr, 1991.
[34] Britanak, V.; Rao, K.R.; “An efficient implementation of the forward and inverse MDCT in MPEG audio coding”, Signal Processing Letters, IEEE Volume 8, Issue 2, Feb. 2001 pp.48 - 51 Digital Object Identifier 10.1109/97.895372.
[35] Yun-Hui Fan; Madisetti, V.K.; Mersereau, R.M.; “On fast algorithms for computing the inverse modified discrete cosine transform”, IEEE Signal Processing Letters, Volume 6, Issue 3, March 1999 pp.61 - 64 Digital Object Identifier 10.1109/97.744625
[36] M.-H Cheng, Y.-H. Hsu;”Fast IMDCT/MDCT algorithms-a matrix approach”,
IEEE Trans. On Signal Processing. Jan 2003, pp.221-9
[37] Lau, W.; Chwu, A.; “A common transform engine for MPEG and AC3 audio
decoder”, IEEE Transactions on Consumer Electronics, Volume 43, Issue 3,
Aug. 1997 pp.559 – 566
[37] J.N. Mitchell Jr., “Computer Multiplication and Division Using Binary Logarithms,” IRE Trans Electronic Computer, vol. 11, pp.512-517, Aug. 1962
[38] Abed, K.H., Siferd, R.E., “CMOS VLSI implementation of a low-power logarithmic converter” IEEE Transactions onComputers, Volume 52, Issue 11, Nov. 2003 Page(s):1421 – 1433.
[39] Gerald Moser, Coding Technologies, “MPEG-4 aacPlus Audio coding for today’s digital media world, ” Whitepaper, November 2005.
指導教授 蔡宗漢(Tsung-Han Tsai) 審核日期 2006-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明