中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/11156
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81025/81025 (100%)
Visitors : 46491884      Online Users : 539
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/11156


    Title: 應用資料探勘於汽車售服零件庫存滯銷因素分析-以C公司為例;The Analysis of Dead Stock Factor For Automobile Spare parts using Data mining Technique-A Case Study on C company
    Authors: 范綱彬;Kang-pin Fan
    Contributors: 工業管理研究所碩士在職專班
    Keywords: 資料探勘;售服零件;羅吉斯迴歸;決策樹;data mining;spare parts;Logistic Regression;C&RT decision tree
    Date: 2009-05-06
    Issue Date: 2009-09-22 14:15:09 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在汽車銷售市場逐年萎縮,各車廠在製造端沒有獲利的情況下,紛紛將目標轉為仍有廣大需求的售後服務市場,並盡力降低零件呆料,以提升企業競爭力。 依據歷史經驗,庫存之零件變成呆料之可能性會隨著庫存年限的增加而變高。但未異動ㄧ年之內的零件,通常能藉著促銷或是折扣之方式進行銷售,而避免變成呆料。所以如何能有效的挑選出容易成為呆料之零件(即滯銷零件),使管理者能提前進行促銷或是進行備料量之調整,便成了此次研究想探討的問題。 本研究以C公司為例,收集大量庫存零件資料,並利用資料探勘手法,配合Clementine軟體,建立三種模型,其為羅吉斯迴歸預測模型、羅吉斯迴歸預測模型-c合併變數模型及C&RT決策樹模型,經過三項模型比較後,得知以C&RT決策樹建立預測模型,可有效預測呆料風險,進而降低呆料發生機率,可作為後續各車廠降低成本之參考。 In the downturn of the automobile market and under the situation of earning a little profit, those automobile manufacturers shift their target to the after-sales markets, which still have big demand. Besides, In order to improve their company competition, they also try their best to reduce dead parts quantity. According to the experience, the dead part probability of inventory stock will increase with the inventory years. If the part has sale history in one year, it often can avoid becoming dead part by using promotion or discount. So, how to pick up the high risk dead part and let manager to do promotion or discount in advice is this thesis main purpose. This thesis is using C company for research data. Besides, the thesis also uses data mining methodology and Clementine software to build three prediction models. They are Logistic Regression, Logistic Regression with PCA/Factor and C&RT decision tree. After evaluating these three models, this thesis recommends using C&RT decision to prediction model. It can decrease the risk of dead parts efficiently, and it can be a reference for motor company.
    Appears in Collections:[Executive Master of Industrial Management] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明