在網路搜尋上,對於不同背景與需求的使用者,一個相同的查詢句,所得到的搜尋結果卻都是相同的大量網頁,這使得個人化搜尋的需求越來越高。使用者興趣檔描述了一個特定使用者的興趣,通常用來幫助搜尋引擎提供個人化的搜尋結果或者應用在推薦系統上。在過去的研究中,使用者興趣檔大部分是依照使用者的瀏覽歷史所建立而成的,而此種使用者興趣檔所代表的資訊,主要為使用者長期的資訊需求,而非單次檢索的資訊需求。 本研究提出了一套方法,藉由相關回饋來擷取出使用者的查詢概念,並應用概念擷取的技術來建立概念化的使用者興趣檔,以此改善反映使用者長期性資訊需求的興趣檔在單次資訊檢索中可能檢索出與使用者資訊需求不符的情況,並希冀能協助使用者從大量的搜尋結果中找出與其資訊需求相關的網頁。 In web search, users usually get the same results for the same query, even if they have different interests and backgrounds. It makes the increase of the demand for personalized search increase. A user profile is the description of a specific user interest. It has been used by search engines to provide personalized search results or applied in recommending system. In the past, personalized search usually relies on searching history for personal interest extraction. In this research we have tried to apply relevance feedback to extract user’s information needs, and apply the technology of concept extraction in the construction of conceptual user profile. It aims to help users to find out the related webpages in numerous search results.