English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41727301      線上人數 : 2226
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/13520


    題名: 樹葉節點數目限制下的決策樹建構;Decision tree induction with constrained number of leaf node
    作者: 楊翔宇;Xiang-Yu Yang
    貢獻者: 資訊管理研究所
    關鍵詞: 決策樹;分群法;限制樹;資料探勘;分類;constraints tree;classification;data mining;decision tree;clustering
    日期: 2009-07-01
    上傳時間: 2009-09-22 15:33:58 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 分類是依據已知的資料及其類別屬性來建立資料的分類模型,並以此預測其他未經分類資料的類別,是一項應用非常廣泛的資料探勘技術。其中決策樹是最常使用的一種分類技術,因為它有容易了解、計算效率高的特性。決策樹廣泛使用在訊號分析、專家系統、醫療辨識等領域裡。但決策樹常因為訓練資料內含的雜訊資料、特殊案例的影響,造成樹體結構龐大、分支太多,產生規則過多難以理解與應用的問題,此項缺點減少了決策樹的可用性。 因此本研究透過限制決策樹的葉節點數,控制決策樹產生的規則量,並在使用者給定的葉節點數範圍內,達到最高的準確度。我們發展出一套新的演算法,本演算法以階層式分群法中的聚合法合併決策樹的分支,限制決策樹為二元樹,以便控制決策樹的節點數量。最後本研究再以實際資料進行實驗實作。 實驗結果顯示,我們提出的新演算法與C4.5比較,在同樣的葉節點數限制下,達到比C4.5更好的準確度。 Classification, which builds a data classification model based on attribute value and label of existing data, is a very widespread data mining technology. Decision tree is one of the most popular classification technologies, because it is easy to understand and has the high efficiency computing. Decision tree is widely applied to signal classification, expert system, and medical diagnosis. Because of the noise data and special case of training data sets, decision tree is always huge and it contains too many branches and rules which are difficult to understand. This shortcoming reduces the availability of decision tree. Therefore, we reduce rules from a decision tree by limiting the number of leaf nodes of the decision tree and achieve the highest accuracy with the number of leaf nodes given by user. For this purpose, we propose a new algorithm. We use the agglomerative approach of the hierarchical clustering to limit the decision tree to binary tree by combining the branches of decision tree. Experiment results show that compared with the C4.5, the proposed algorithm successfully reduces the number of leaf nodes and makes better accuracy.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明