English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81570/81570 (100%)
造訪人次 : 48112478      線上人數 : 513
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/2473


    題名: 表面電漿子與粒子電漿子強化之光電生物感測器;Optical Biosensor with Surface plasmons and Particle plasmons enhancement
    作者: 林俊佑;Chun-Yu Lin
    貢獻者: 機械工程研究所
    關鍵詞: 時域有限差分法;粒子電漿子;表面電漿子;生物感測器;surface plasmon;biosensor;particle plasmon;finite-difference time-domain
    日期: 2004-06-18
    上傳時間: 2009-09-21 11:47:52 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 表面電漿共振(surface plasmons reasnoance,SPR)之生物感測器其具有無需標定待測物(label free)與高靈敏度(high sensitivity)等優點,可即時量測分析生物分子間之作用情形然而在微小濃度下的小生物分子間作用時,傳統之SPR生物感測器的靈敏度能然顯得不足。因此,如何提升感測器之靈敏度,是目前主要的研究課題之一。本實驗室所提出的金屬奈米粒子強化之SPR生物感測器,藉由金屬奈米粒子的作用,已成功地將靈敏度提高10倍,達到100 fg/mm2表面生物分子覆蓋度之境界。而為了能夠更進一步提高靈敏度,因此了解表面電漿子(surface plasmons,SPs)與粒子電漿子(particle plasmons,PPs)之特性,其造成局域電磁場強化與感測器靈敏度間之關係是一重要的研究課題。 在本論文中,首先利用Maxwell-Garnett(MG)等效介電常數理論,來描述金之奈米粒子層的特性,然而此理論限制條件太多,故無法滿足研究上的需求。因此加以時堿有限差分法(finite-difference time-domain method,FDTD Method)輔助,藉由模擬計算各種奈米膜層結構下之電磁場分佈情況,以了解表電漿子與粒子電漿子間的交互作用。我們將這些效應分別以單獨奈米粒子電漿子、奈米粒子間耦合作用(interparticle coupling)及奈米粒子層和金屬膜間作用(gap mode)等三部分逐一分析。 Surface plasmon reasonance (SPR) biosensor has the advantages of label free and high sensitivity. However, the sensitivity is not good enough to analyze biomolecular interaction for small biomolecular in low concentration. Hence, the sensitivity improvement of biosensor is a very important works. We proposed a new metal nanostructure to increase the sensitivity. In the experimental result, we successfully demonstrate that the detection limit to reach can be achieved to 100pg/mm2 of the surface coverage of biomolecular. In order to approach the detection limit to 1fg/mm2, the characteristics of surface plasmons (SPs) and particle plasmons (PPs), such as local electro-magnetic (EM) field enhancement and sensing sensitivity improvement are needed to be studied. In this thesis, we use Maxwell-Garnett (MG) effective media theory to explain the gold-nanoparticle layer. The MG model can not completely match the experimental results. Hence, we use a finite-difference time-domain (FDTD) method to study nanoparticle effect more detail. The plasmon effects such as particle plasmon effect, interparticle coupling effect, and gap mode effect through different structures to enhance the EM field are simulated and studied.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明