目前矽基薄膜太陽電池是利用PECVD 生長非晶矽薄膜,然而PECVD 生長奈微晶矽速率過慢 (~ 0.2 nm/s) 、不易成長多層薄膜,且各層薄膜之間的介面控制困難。本計畫目標以高沉積速率(>1.5 nm/s)之電子迴旋共振化學氣相沉積系統(ECRCVD)生長非晶矽/奈微晶矽薄膜,見圖 1~2,並以此基礎開發創新性之漸進能隙式單層矽基薄膜太陽電池,其光電轉換效率可高達15% 以上。本研究團隊巳使用PVD 生長不同晶粒大小的奈微晶矽,證明其具有不同的吸收與能隙,見圖3~4;並發展出奈米光學表面結構(圖5~6),以增加光子吸收率。此外將研究相關薄膜介面物化特性,來增進光電轉換效率。本計劃開發之技術有高產能(throughput) 之特點,可應用在低成本、高效率及高量產之矽基薄膜太陽電池。 主要研究重點: 1. 低溫高密度電漿化學沉積矽基薄膜設備製程研發: ECRCVD 具有低溫成膜(< 200 °C)、高電漿密度(> 1012 cm-3)及高沉積速率(> 1.5 nm/s for nc/μc-Si)之特點,被認為是生產第二代高效率低成本太陽電池的設備。本計畫將以高頻ECRCVD 成長非晶矽與奈微晶矽吸收層作為出發點,藉由改變電漿極化系統設計、搭配第二電漿輔助系統(Inductively Coupled Plasma)及調整沉積相關參數來獲得p、i、n 各層之最佳成長條件;並探討成長後退火處理(爐管、雷射、與RTA 等)對薄膜結構性質(結晶度、結晶方向和晶粒成長等)及相關光電特性(載子遷移率、光吸收率等)之影響;再以此為基礎製作基本的單層矽基薄膜(PIN)太陽電池結構。 2. 高效率漸進能隙式之單層矽基薄膜太陽電池:漸進能隙吸收層之主要特點為在single junction 時就可以達到吸收太陽光譜的主要範圍,因此具有高光電轉換效率與製程簡易之優點。本研究將改變沉積條件成長不同比例的a-Si, nC-Si, μC-Si,可得到能隙連續變化的吸收層;並藉由分析薄膜結構與光電特性獲得最優化製程條件,以成長高效能矽基薄膜太陽電池。此外,將分別在矽薄膜層與背電極金屬層製作週期性奈米結構,利用導波模態共振效應(guided-mode resonance effect)和表面電漿共振 (surface plasmon resonance)及洩漏模態共振(leaked- mode resonance)的共伴效應,可使紅外線與可見光光子在矽膜層內產生橫向擴散效應,提升矽膜層的光子捕捉能力達到三倍並提高吸收效率。 3. 非晶矽/奈微晶矽薄膜吸收與傳導機制之材料及介面研究: 本研究著重於異質介面設計與分析。利用ECRCVD 沉積單一大小及漸進大小晶粒層,探討晶粒介面及其光電性質;藉由TEM、 SEM、能量散佈光譜儀、Auger 電子能譜儀,Raman/FTIR 光譜儀等儀器,探討晶粒介面物化性質。同時經由介面化學之調整,控制在退火效應時的晶粒成長,並降低電子電洞復合機率。更進一步將研究非晶矽或奈微晶矽n 層與p 層所產生之電子及電洞流穿透異質介面特性,以減少寄生電阻提升Fill Factor。由於太陽電池中各層介面的缺陷對於電池效率有關鍵性的影響,本研究並將探討各層介面的成長切換條件,用以改善介面間之缺陷,進而增進光電轉換效率。 The objectives of this proposed program are (a) to develop high efficiency TF-Si solar cells with innovative graded sized nano crystalline intrinsic layer in a p-i-n single junction configuration, in combination with light trapping technology; (b) to investigate a low temperature high efficiency technique applying high deposition rate Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) for the low cost production of p-i-n solar cells; (c) to demonstrate to domestic and international industries on the potential of ECRCVD as a viable, low cost industrial process for solar cell production; and furthermore, (d) to form partnership with industry on commercialization of TF-Si solar cells. Our approaches are as followings. (1) Innovative high deposition rate and solar cell processes development- A low temperature and high density plasma hybrid ECRCVD/ICP to deposit silicon thin film and fabrication of its high efficiency Solar Cell (2) Enhancement of efficiency by graded nano structures and light trapping technology- with broadband absorption using graded nanocrystal and with light trapping using GMR and SPR effects (3) Advanced graded nano crystalline enhanced p-i-n solar cell material development- Study of thin film materials and interfacial control of amorphous Si (a-Si:H), nano crystalline (nc-Si:H) and microcrystalline (μc-Si:H) with respect to their size control and carrier mobility mechanisms. Our integrated approaches, in combination all the efforts from hybrid ECRCVD/ICP process development, nano graded bandgap technology, light trap technology (novel waveguide type photonic crystal technology), and thin film material interfacial control and characterization, can potentially achieve a solar cell efficiency as high as 20%, and also have a high deposition rate of greater than 15 A/sec in production. 研究期間 : 9808 ~ 9907