中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/26291
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78818/78818 (100%)
Visitors : 34879734      Online Users : 444
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26291


    Title: Appraising cone penetration test based liquefaction resistance evaluation methods: artificial neural network approach
    Authors: Juang,CH;Chen,CJX;Tien,YM
    Contributors: 土木工程研究所
    Keywords: CPT;SANDS
    Date: 1999
    Issue Date: 2010-06-29 17:10:04 (UTC+8)
    Publisher: 中央大學
    Abstract: This paper evaluates and compares two comprehensive cone penetration test (CPT) based methods for evaluating liquefaction resistance of sandy soils. The comparison is made based on the results obtained from artificial neural network (ANN) analyses. Two methods are compared, one by Olsen and his colleagues at the Waterways Experiment Station and one by Robertson and his colleagues at the University of Alberta. ANN models are created to approximate the two CPT-based methods so that they can easily be compared using a large database. The results show that ANN models can approximate both Robertson and Olsen methods well, and that both methods are fairly accurate in predicting liquefaction resistance. The Robertson method has a success rate of 89% in predicting liquefied cases, a success rate of 76% in predicting nonliquefied cases, and an overall success rate of 84%. The success rates for the Olsen method are 68%, 89%, and 77%, respectively, in predicting liquefied cases, nonliquefied cases, and all cases. Both methods are considered accurate in predicting liquefaction resistance of sandy soils. The Robertson method is slightly more accurate than the Olsen method. The issue of the propagation of potential uncertainties in the soil parameters and solution model is also discussed.
    Relation: CANADIAN GEOTECHNICAL JOURNAL
    Appears in Collections:[Graduate Institute of Civil Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML506View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明