English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 25450640      Online Users : 192
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26374

    Title: Determination of Average Failure Time and Microstructural Analysis of Sn-Ag-Bi-In Solder Under Electromigration
    Authors: Wu,AT;Sun,KH
    Contributors: 化學工程與材料工程學系
    Date: 2009
    Issue Date: 2010-06-29 17:26:37 (UTC+8)
    Publisher: 中央大學
    Abstract: Despite the extensive use of Sn-Ag-Cu as a Pb-free solder alloy, its melting point is significantly higher than that of eutectic Sn-Pb solder. Sn-Ag-Bi-In solder is an alternative Pb-free solder, with a melting temperature close to that of eutectic Sn-Pb. This study elucidates the electromigration behavior of Sn-Ag-Bi-In solder and then compares the results with those of the Sn-Ag-Bi system. The behavior of Pb-free Sn-Ag-Bi-In solder strips under electromigration is examined by preparing them in Si (001) U-grooves. The samples are then tested under various temperatures and current densities. Although the compounds thicken near both electrodes with current stressing, the thickness at the anode exceeds that at the cathode. Experimental results of the average failure time indicate that Sn-Ag-Bi-In solder has a longer lifetime than does Sn-Ag-Bi, which is attributed to the zeta phase. Additionally, the zeta phase dissolved by the current in the early stage replenishes the outgoing atomic flux. These atomic fluxes also enhance the growth of abnormally large particles in the middle of the strips. Field-emission electron probe microanalysis (FE-EPMA) results indicate that the amount of indium is reduced after the zeta phase near the cathode is exhausted for extended current stressing time.
    Appears in Collections:[化學工程與材料工程研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明