English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23273064      Online Users : 583
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/26459


    Title: Characteristics of V-MCM-41 and its catalytic properties in oxidation of benzene
    Authors: Chen,YW;Lu,YH
    Contributors: 化學工程與材料工程學系
    Keywords: MESOPOROUS MOLECULAR-SIEVES;ORGANIC-MOLECULES;SELECTIVE OXIDATION;MCM-41;VANADIUM;ALUMINOSILICATES;HYDROXYLATION;MECHANISM;ALUMINUM;ZEOLITE
    Date: 1999
    Issue Date: 2010-06-29 17:28:33 (UTC+8)
    Publisher: 中央大學
    Abstract: A series of mesoporous vanadosilicate V-MCM-41 molecular sieves with variable Si/V ratios have been hydrothermally synthesized at pH = 10. These materials were investigated by powder X-ray diffraction (XRD), framework FTIR, diffuse reflectance UV-visible spectroscopy, nitrogen sorption measurement, scanning electron microscopy, transmission electron microscopy (TEM), thermogravimetric analysis, and differential thermal analysis. XRD and FTIR showed that the solid products had the MCM-41 structure and contained only atomically dispersed vanadium consistent with framework vanadium in V-MCM-41. Nitrogen sorption results showed that all df the materials had a uniform pore size distribution with pore size of around 3.0 nm. The crystallinity of V-MCM-41 decreased with an increase of the vanadium content. The hexagonal array structure of uniform pore size was observed by TEM. It proved that the pores were highly aligned. The catalytic activities of V-MCM-41 were tested in the partial oxidation of benzene by diluted hydrogen peroxide in a batch reactor. Phenol was the only liquid product. The catalytic activities of V-MCM-41 were more active than those supported on Y and beta zeolite. In addition, the V/MCM-41 prepared with hydrothermal synthesis was more active than that prepared with impregnation.
    Relation: INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
    Appears in Collections:[化學工程與材料工程研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML375View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明