English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78818/78818 (100%)
造訪人次 : 34694700      線上人數 : 1148
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/26904


    題名: A critical review of condensation heat transfer predicting models-effects of surface-tension force
    作者: Yang,CY
    貢獻者: 機械工程研究所
    關鍵詞: EXTRUDED ALUMINUM TUBES;INTEGRAL-FIN TUBES;FILM CONDENSATION;MICRO-FINS;PRESSURE-DROP;FLOW REGIME;R-12
    日期: 1999
    上傳時間: 2010-06-29 18:02:54 (UTC+8)
    出版者: 中央大學
    摘要: Condensation is defined as the transformation of vapor to its liquid state. Gravity and vapor shear are the two forces that drive the Row of the condensate film inside plain tubes. Traditional condensation predicting models generally include the effects of these two forces. For finned tubes, the surface-tension force will also be important, This paper provides a critical review of existed predicting models to correlate condensation heat transfer coefficients. Gravity-force dominated models, vapor-shear dominated models and the effects of surface-tension force are all discussed, Three basic methods have been used to model the vapor-shear dominated annular liquid film. The first model assumed that the vapor core could be replaced with an equivalent liquid flow that would yield the same value for the vapor shear. The second model assumed that the major resistance to heat transfer was offered only by the laminar liquid sublayer. The third model assumed that the velocity in liquid film could be predicted using von Karman universal velocity profile. Yang and Webb (1997) study shows that at low-mass-velocity and high-vapor-quality conditions, the effect of surface tension is comparable to that of vapor shear for condensation heat transfer inside a micro-fin tube with 13 mu m fin tip radius. Owing to the manufacturing technology development of integrated circuits, smaller tubes and fin geometries can be made and used for increasing the condensation heat transfer coefficient. Because the surface-tension drainage force is proportional directly to the inverse of fin-tip radius, the importance of the surface-tension effect will increase with the development of microfabrication technology. The Yang and Webb (1997) model is the first model that accounts for the effects of vapor and surface-tension forces simultaneously. However, their database did not cover wide range of fluid properties and fin geometries. More work is needed on correlation and theoretically based models.
    關聯: JOURNAL OF ENHANCED HEAT TRANSFER
    顯示於類別:[機械工程研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML326檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明