English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23032594      Online Users : 445
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27238

    Title: Synergistic effect of transition metal oxides and ozone on PCDD/F destruction
    Authors: Wang,HC;Chang,SH;Hung,PC;Hwang,JF;Chang,MB
    Contributors: 環境工程研究所
    Date: 2009
    Issue Date: 2010-06-29 18:20:57 (UTC+8)
    Publisher: 中央大學
    Abstract: Catalytic oxidations of PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) with ozone on the transition metal oxides (iron oxide or manganese oxide) at the temperature range of 120-180 degrees C were investigated. These two catalysts were prepared by precipitation methods. Iron oxide has a higher surface area (330 m(2)/g) than manganese oxide (53 m(2)/g). In the absence of ozone, the removal efficiencies of PCDD/Fs achieved with iron oxide or manganese oxide were between 83% and 85%, while the destruction efficiencies were only between 20% and 25% at 180 degrees C. It indicates that adsorption was the main removal mechanism of PCDD/Fs over these two catalysts. On the other hand, ozone addition greatly enhanced the catalytic activity of iron oxide or manganese oxide catalysts on the oxidation of gaseous PCDD/Fs. At 180 degrees C, the destruction efficiencies of gaseous PCDD/Fs achieved with iron oxide or manganese oxide with 100 ppm O-3 exceeded 90%. It indicates that catalytic ozonation achieved with iron oxide or manganese oxide is effective in decomposing PCDD/Fs and the application of ozone lowers the reaction temperature of PCDD/F oxidation below 200 degrees C. Furthermore, the synergistic effect of iron oxide and ozone is superior to that of manganese oxide due to the fact that the surface of iron oxide has more hydroxyl groups, which easily form hydrogen bonds with ozone and decompose to form atomic oxygen for the further reaction with dioxin molecules. (C) 2008 Elsevier B.V. All rights reserved.
    Appears in Collections:[環境工程研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明