English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78728/78728 (100%)
造訪人次 : 33564704      線上人數 : 1856
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27285


    題名: Effluent suspended solid control of activated sludge process by fuzzy control approach
    作者: Tsai,YP;Ouyang,CF;Wu,MY;Chiang,WL
    貢獻者: 環境工程研究所
    關鍵詞: SYSTEMS;IDENTIFICATION;PERFORMANCE;MODELS
    日期: 1996
    上傳時間: 2010-06-29 18:22:01 (UTC+8)
    出版者: 中央大學
    摘要: The influent flow rate and substrate concentration normally vary with time in a municipal wastewater treatment plant (MWWTP). The treatment units must be operated dynamically to prevent the process from failing, reducing treatment efficiency, and creating a lack of stability. Using real time operation data to control the dynamic activated sludge process (DASP) systematically is an alternative approach to the expert system, which is based on experts' knowledge and/or operators' experiences and whose control rules are typically difficult to be derived by a systematic approach. The fuzzy control theory based on modified Newton's method can make real-time control feasible and is adopted in this study. The theory is definitely a systematic approach toward deriving optimum control strategies on-line. The optimum control strategies derived from the proposed approach are verified by experimental results that indicate that the forecast and control abilities of fuzzy model are sufficient. The proposed systematic approach only requires on-line monitored data, not experts' knowledge and operators' experiences, to adequately control the complex system. This feature is possible despite the fact that the system information is not clearly described, the kinetic model and related parameters are unknown, or the dynamic behaviors of the process are not thoroughly understood. Moreover, a comparison is also made in this study of the results between F:M ratio and fuzzy control strategies. That comparison reveals that the F:M control might not be appropriate for DASP when municipal wastewater is treated. The fuzzy control strategies confirm that the operating concepts for DASP are similar to those for a steady-state condition and can make the effluent quality better and more stable. The only difference between both systems is that time delay problems arise in DASP, but not in steady-state ASP.
    關聯: WATER ENVIRONMENT RESEARCH
    顯示於類別:[環境工程研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML499檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明