English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23130986      Online Users : 682
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27558

    Title: Seismogenic stress field beneath the Tatun Volcano Group, northern Taiwan
    Authors: Konstantinou,KI;Lin,CH;Liang,WT;Chan,YC
    Contributors: 地球物理研究所
    Date: 2009
    Issue Date: 2010-06-29 18:40:53 (UTC+8)
    Publisher: 中央大學
    Abstract: The Tatun Volcano Group (TVG) represents the main volcanic center in northern Taiwan and based on various observations it is considered a potentially active volcano. TVG has been monitored since 2003 by a seismic network that consists of eight stations equipped with three-component, short-period and broadband seismometers. In this study, we use waveform data of high frequency earthquakes in order to investigate the stress field orientation beneath the TVG area. The focal mechanisms of 35 selected events have been derived using P-wave polarities and amplitude ratios, assuming a double-couple source. These fault plane solutions and various subsamples derived from them, were subsequently inverted for the best fitting stress tensor using a linear inversion method. The results show stress homogeneity beneath TVG for depths larger than 3 km while the stress tensor is characterized by a subvertical sigma(1) and a subhorizontal NW-SE trending sigma(3) axis consistent with the regional stress field in northern Taiwan. On the other hand, Chihsinshan which is an area of vigorous hydrothermal activity, exhibits a localized stress field with horizontal NW-SE trending sigma(3) axis and NE-SW trending horizontal sigma(1). Such an axes orientation is likely to be causing opening of microcracks and thus favour the ascent and circulation of fluids in the upper crust. Shear wave splitting measurements seem to confirm these results, showing fast polarization directions along NNE-NE, subparallel to the main fracture system in TVG. Shear wave anisotropy averages about 2.9% and is probably caused by an anisotropic volume of fluid-saturated cracks within the upper 2.5 km of the crust. (c) 2009 Elsevier B.V. All rights reserved.
    Appears in Collections:[地球物理研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明