中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27616
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47100031      在线人数 : 451
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27616


    题名: Effects of seismic anisotropy and geological characteristics on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides during Chi-Chi earthquake
    作者: Dong,JJ;Lee,WR;Lin,ML;Huang,AB;Lee,YL
    贡献者: 應用地質研究所
    关键词: ERH-SHAN LANDSLIDE;CENTRAL TAIWAN;FRICTION LAWS;ROCK FRICTION;STRENGTH;EXAMPLE;SURFACE;NANTOU;SITE
    日期: 2009
    上传时间: 2010-06-29 18:42:02 (UTC+8)
    出版者: 中央大學
    摘要: The Chi-Chi earthquake (Mw=7.6) of September 21, 1999 triggered many landslides in central Taiwan. Two of these landslides, Hungtsaiping (HTP) and Jiufengershan (JFES) were situated as close as 2 km from each other but had significant differences in their kinematics. JFES landslide was a catastrophic rockslide-avalanche and the HTP landslide was relatively slow-moving. The authors conducted a study to explore the reasons for such differences. Factors such as the characteristics of strong ground motion, sliding direction of landslide, and friction angle of the sliding surface were considered in the study. An analysis of 12 strong-motion records collected in the study area showed that the distribution of horizontal pseudostatic coefficients, earthquake energy ratio and permanent sliding-block displacements (Newmark displacement) were anisotropic with their predominant direction mostly in the E/W-ESE/WNW trending. This direction is perpendicular to the axis of the main geological structures of the studied area. The computed Newmark displacement in the sliding direction of the JFES landslide is larger (44%) than that of the HTP landslide with sliding surface inclination of 21 degrees and friction angle of 28 degrees We can conclude that the seismic anisotropy and the corresponding sliding direction are important contributing factors to the kinematics of studied landslides. The back-calculated friction angle of the sliding surface that corresponds to a critical Newmark displacement for the JFES landslide is about 3.5 degrees higher than that of HTP landslide. The material (colluvium) on the sliding surface in HTP should be less velocity-dependent than that of the JFES landslide (rock) according to the back calculations. The importance of seismic anisotropy, sliding direction, and mechanical properties of sliding surface on the kinematics of deep-seated landslides is demonstrated. (c) 2007 Elsevier B.V. All rights reserved.
    關聯: TECTONOPHYSICS
    显示于类别:[應用地質研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML596检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明