中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27665
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47398533      在线人数 : 386
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27665


    题名: A neural-network approach to radiometric sensing of land-surface parameters
    作者: Liou,YA;Tzeng,YC;Chen,KS
    贡献者: 太空及遙測研究中心
    关键词: PROCESS RADIOBRIGHTNESS MODEL;MOISTURE TRANSPORT;SOIL-MOISTURE;COUPLED HEAT;MICROWAVE;RETRIEVALS;VEGETATION
    日期: 1999
    上传时间: 2010-06-29 18:51:45 (UTC+8)
    出版者: 中央大學
    摘要: A biophysically-based land-surface process/radiobrightness (LSP/R) model is integrated with a dynamic learning neural network (DLNN) to retrieve the land-surface parameters from its radiometric signatures. Predictions from the LSP/R model are used to train the DLNN and serve as the reference for evaluation of the DLNN retrievals, Both horizontally polarized and vertically polarized brightnesses at 1.4 GHz, 19 GHz, and 37 GHz for an incidence angle of 53 degrees make up the input nodes of the DLNN. The corresponding output nodes are composed of land-surface parameters, canopy temperature and water content, and soil temperature and moisture (uppermost 5 mm), Under no-noise conditions, the maximum of the root mean-square (RMS) errors between the retrieved parameters of interest and their corresponding reference from the LSPIR model is smaller than 2% for a four-channel case with 19 GHz and 37 GHz. brightnesses as the inputs of the DLNN. The maximum RMS error is reduced to within 0.5% if additional 1.4 GHz brightnesses are used (a six-channel case). This indicates that the DLNN produces negligible errors onto its retrievals. For the realization of the problem, two different levels of noises are added to the input nodes. The noises are assumed to he Gaussian distributed with standard deviations of 1K and 2K, The maximum RMS errors are increased to 9.3% and 10.3% for the 1K-noise and 2K-noise cases, respectively, for the four-channel case. They are reduced to 6.0% and 9.1% for the 1K-noise and 2K-noise cases, respectively, for the six-channel case. This is an implication that 1.4 GHz is a better frequency in probing soil parameters than 19 GHz and 37 GHz, In addition, the promising of the proposed inversion approach an the radiometric sensing of the land-surface parameters is demonstrated.
    關聯: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
    显示于类别:[太空及遙測研究中心] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML505检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明