中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27745
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78937/78937 (100%)
Visitors : 39429844      Online Users : 640
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/27745


    Title: Thermodynamic basis of chiral recognition in a DNA aptamer
    Authors: Lin,PH;Tong,SJ;Louis,SR;Chang,Y;Chen,WY
    Contributors: 系統生物與生物資訊研究所
    Keywords: L-RNA APTAMER;ISOTHERMAL TITRATION CALORIMETRY;HEAT-CAPACITY CHANGES;STATIONARY-PHASE;AMINO-ACID;BINDING;ARGININE;PROTEINS;TARGET;PROTONATION
    Date: 2009
    Issue Date: 2010-06-29 19:26:56 (UTC+8)
    Publisher: 中央大學
    Abstract: Chiral separation is an important issue in pharmaceutical research and industries, because most organic compounds and biological molecules, including many drugs and food additives, are chiral compounds. DNA aptamers are a new group of chiral selectors; however, there still exists deficiencies in the understanding of the molecular basis of their chiral recognition. Herein, a comparative study of the DNA aptamer binding with L-argininamide (L-Arm) and its enantiomer (D-Arm) is investigated by spectroscopic and calorimetric methods. The effect of various experimental conditions such as temperature, pH and salt concentration on the L-Arm and D-Arm binding properties was studied in order to provide information about the chiral recognition mechanism of the DNA aptamer. An isothermal titration calorimetry study reveals that both L-Arm and D-Arm binding with the aptamer are enthalpy driven and entropy cost processes. The protonated amino group of both L-Arm and D-Arm participates in electrostatic interaction and this interaction is stronger for D-Arm than L-Arm binding with the aptamer. From the opposite behavior of the heat capacity change of the two enantiomers, we could suggest that L-Arm and D-Arm bind at different binding sites of the aptamer, resulting in different conformations of the binding complexes. In the binding mechanism, electrostatic interaction provided by the protonated amino group with the aptamer and the conformational change of the nucleic acid upon binding are major processes involved for chiral recognition in the DNA aptamer. This study provides information on chiral separation of D- and L-argininamide by the aptamer, which can be successfully achieved by varying the operation temperature based on the opposite heat capacity dependence of the enantiomers binding with the DNA.
    Relation: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
    Appears in Collections:[Institute of Systems Biology and Bioinformatics] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML807View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明