中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27789
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 70585/70585 (100%)
造访人次 : 23121186      在线人数 : 470
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27789


    题名: An optimal test for the mean function hypothesis
    作者: Cheng,KF;Wu,JW
    贡献者: 統計研究所
    关键词: GENERALIZED LINEAR-MODELS;REGRESSION-MODELS
    日期: 1998
    上传时间: 2010-06-29 19:33:39 (UTC+8)
    出版者: 中央大學
    摘要: The conditional mean of the response variable Y given the covariates X = x is an element of R-p is usually modelled by a parametric function g(beta x), where g(.) is a known function and beta is a row vector of p unknown parameters. In this paper, a new method for testing the goodness of fit of the model g(beta x) for the mean function is presented. The new test depends on the selection of weight functions. An expression for the efficacy of the proposed test under a sequence of local alternatives will be given. With the application of this result one can direct the choice of the optimal weight functions in order to maximize the efficacy. The new test is simple in computation and consistent against a broad class of alternatives. Asymptotically, the null distribution is independent of the underlying distribution of Y given X = x. Two pratical examples are given to illustrate the method. Further, simulation studies are given to show the advantages of the proposed test.
    關聯: STATISTICA SINICA
    显示于类别:[統計研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML383检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈  - 隱私權政策聲明