中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/27810
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 70585/70585 (100%)
造訪人次 : 23186729      線上人數 : 516
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/27810


    題名: NONPARAMETRIC REGRESSION ESTIMATES USING MISCLASSIFIED BINARY RESPONSES
    作者: CHU,CK;CHENG,KF
    貢獻者: 統計研究所
    關鍵詞: DOUBLE SAMPLING SCHEME;CATEGORICAL-DATA;BINOMIAL DATA
    日期: 1995
    上傳時間: 2010-06-29 19:34:07 (UTC+8)
    出版者: 中央大學
    摘要: For random design nonparametric regression, in the case that the responses are binary and subject to misclassification, the performance of the kernel estimator is investigated. The kernel estimator is generally biased for the local proportion. To adjust for the bias, the double sampling scheme of Tenenbein (1970, 1971) is considered. A plugged-in kernel estimator and an imputed kernel estimator, which adjust for the effect of misclassification on the kernel estimator, are proposed, and their asymptotic mean squared errors are analysed. The plugged-in kernel estimator is better than the simple kernel estimator, which uses only the data without misclassification in the validation subsample, in the sense of having smaller asymptotic mean squared error. However, the imputed kernel estimator has smaller asymptotic variance. If the misclassification probabilities are constant, then the two proposed estimators have the same asymptotic bias. In this case, the imputed kernel estimator is always better than the plugged-in kernel estimator. For general misclassification probabilities, the asymptotic biases of the two proposed estimators are not comparable in magnitude. However, our simulation results demonstrate that, even when the misclassification probabilities are not constant, the imputed kernel estimator is still better for reasonable sample sizes.
    關聯: BIOMETRIKA
    顯示於類別:[統計研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML366檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋  - 隱私權政策聲明