In this paper, we first prove the CR analogue of Obata's theorem on a closed pseudohermitian 3-manifold with zero pseudohermitian torsion. Secondly, instead of zero torsion, we have the CR analogue of Li-Yau's eigenvalue estimate on the lower bound estimate of positive first eigenvalue of the sub-Laplacian in a closed pseudohermitian 3-manifold with nonnegative CR Paneitz operator P (0). Finally, we have a criterion for the positivity of first eigenvalue of the sub-Laplacian on a complete noncompact pseudohermitian 3-manifold with nonnegative CR Paneitz operator. The key step is a discovery of integral CR analogue of Bochner formula which involving the CR Paneitz operator.