English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23126271      Online Users : 484
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/28340

    Title: Structures of Aniline and Polyaniline Molecules Adsorbed on Au(111) Electrode: as Probed by in Situ STM, ex Situ XPS, and NEXAFS
    Authors: Yau,SL;Lee,YH;Chang,CZ;Fan,LJ;Yang,YW;Dow,WP
    Contributors: 中央大學
    Date: 2009
    Issue Date: 2010-06-29 19:46:29 (UTC+8)
    Publisher: 化學研究所
    Abstract: In situ scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) were used to examine the electrified interface of Au(111) in 0.1 M H2SO4 containing 0.030 M aniline. In agreement with cyclic voltammogram (CV), which revealed two pairs of peaks at 0.48 and 0.62 V, in situ STM imaging yielded two highly ordered aniline adlattices, (root 19 x 5) at 0.55 V and (3 x 2 root 3)rect at 0.85 V [vs reversible hydrogen electrode, RHE]. According to XPS results obtained with Au(111) emersed at 0.85 V from 0.1 MH2SO4 + 0.030 M aniline, bisulfate anions were coadsorbed in an amount equal to that of aniline. The (3 x 2 root 3)rect-aniline structure was examined carefully by STM using different imaging conditions. Results revealed that imaging with a tunneling current of 10 nA at a -300 mV bias voltage allowed molecular resolution of both aniline admolecules and bisulfate anions. These species could form acid-base pairs and mingled uniformly on the Au(111) electrode. NEXAFS results were also obtained at 0.85 V, showing that the phenyl rings of aniline admolecules on average was tilted away from the Au(I 11) substrate by 47 degrees. At E > 0.95 V, aniline molecules were oxidized to cation radicals, which initiated intermolecular coupling between aniline molecules to form polyaniline (PAN). The as-formed PAN assuming the form of emeraldine salt exhibited distinct linear conformations, which is proposed to derive from a unique head-to-tail arrangement of aniline monomers in the (3 x 2 root 3)rect structure. The coadsorbed bisulfate anions played an important role in the production of surface-bound PAN emeraldine salts, whose high conductivities facilitated molecular resolution STM imaging up to a thickness of four PAN layers.
    Appears in Collections:[化學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明