English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23146528      Online Users : 448
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/29102

    Title: An expert system to classify microarray gene expression data using gene selection by decision tree
    Authors: Horng,JT;Wu,LC;Liu,BJ;Kuo,JL;Kuo,WH;Zhang,JJ
    Contributors: 資訊工程研究所
    Date: 2009
    Issue Date: 2010-06-29 20:13:47 (UTC+8)
    Publisher: 中央大學
    Abstract: Gene selection call help the analysis of microarray gene expression data. However, it is very difficult to obtain a satisfactory classification result by machine learning techniques because of both the curse-of-dimensionality problem and the over-fitting problem. That is, the dimensions of the features are too large but the samples are too few. In this study, we designed an approach that attempts to avoid these two problems and then used it to select a small set of significant biomarker genes for diagnosis. Finally, we attempted to use these markers for the classification of cancer. This approach was tested the approach on a number of microarray datasets in order to demonstrate that it performs well and is both useful and reliable. (C) 2008 Elsevier Ltd. All rights reserved.
    Appears in Collections:[資訊工程研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明