中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/36009
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 78818/78818 (100%)
造访人次 : 34620680      在线人数 : 2016
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/36009


    题名: Cesium adsorption and distribution onto crushed granite under different physicochemical conditions
    作者: Tsai,SC;Wang,TH;Li,MH;Wei,YY;Teng,SP
    贡献者: 水文科學研究所
    关键词: AQUEOUS CS+ IONS;SUBSURFACE SEDIMENTS;HANFORD SITE;SORPTION;CLAY;MINERALS;IRON;RADIOCESIUM;BENTONITE;REMOVAL
    日期: 2009
    上传时间: 2010-07-08 09:29:38 (UTC+8)
    出版者: 中央大學
    摘要: The adsorption of cesium onto crushed granite was investigated under different physicochemical conditions including contact time, Cs loading, ionic strength and temperature. In addition. the distribution of adsorbed Cs was examined by X-ray diffraction (XRD) and EDS mapping techniques. The results showed that Cs adsorption to crushed granite behaved as a first-order reaction with nice regression coefficients (R-2 >= 0.971). Both Freundlich and Langmuir models were applicable to describe the adsorption. The maximum sorption capacity determined by Langmuir model was 80 mu mol g(-1) at 25 degrees C and 10 mu mol g(-1) at 55 degrees C. The reduced sorption capacity at high temperature was related to the partial enhancement of desorption from granite surface. In general, Cs adsorption was exothermic (Delta H < 0, with median of -12 kJ mol(-1)) and spontaneous (Delta G < 0, with median of -6.1 at 25 degrees C and -5.0 kJ mol(-1) at 55 degrees C). The presence of competing cations such as sodium and potassium ions in synthetic groundwater significantly reduces the Cs adsorption onto granite. The scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM/EDS) mapping method provided substantial evidences that micaceous minerals (biotite in this case) dominate Cs adsorption. These adsorbed Cs ions were notably distributed onto the frayed edges of biotite minerals. More importantly, the locations of these adsorbed Cs were coincided with the potassium depletion area, implying the displacement of K by Cs adsorption. Further XRD patterns displayed a decreased intensity of signal of biotite as the Cs loading increased, revealing that the interlayer space of biotite was affected by Cs adsorption. (C) 2008 Elsevier B.V. All rights reserved.
    關聯: JOURNAL OF HAZARDOUS MATERIALS
    显示于类别:[水文與海洋科學研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML852检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明