English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 24776334      Online Users : 780
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/43886


    Title: 相關性連續與個數資料之強韌概似分析;Robust likelihood inference for correlated discrete and continuous data
    Authors: 李雪萍;Shueh-ping Lee
    Contributors: 統計研究所
    Keywords: 強韌概似函數;卜瓦松迴歸模型;混合模型;robust likelihood function;Poisson regression model;mixture model
    Date: 2010-07-06
    Issue Date: 2010-12-08 14:24:15 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 具相關性的連續與個數資料,如一個人看病的次數與其血壓值,常見於醫學或其它研究領域中。這種相關性的資料在分析上較困難,原因是不易找到合適的統計模型。 本文嘗試利用Royall與Tsou (2003)的強韌概似函數法,來建立一個對迴歸係數做不需知道正確模型的有母數強韌推論法。 This thesis is concerned with regression analysis of bivariate correlated count and continuous data. The mixed Poisson-normal is chosen as the working model for the joint distribution of the bivariate data.We then show that this working model can be corrected to become asymptotically robust against model misspecifications. Full likelihood inference about regression parameters is therefore made available without knowing the true underlying joint distributions. Simulations and real data analysis are provided to demonstrate the efficacy of the new parametric robust likelihood approach for bivariate count-continuous data.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML777View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明