本篇論文運用音源和麥克風陣列間,快速的相對運動,所造成的訊號到達時間差之補償,來解決移動中的聲音訊號來源的追蹤問題。並藉由模擬不同的麥克風陣列排列形狀來比較追蹤角度的精確度。 其中利用sinc函數所構成的位移、取樣、延遲濾波器,及麥克風陣列和音源,在笛卡爾座標系中的相對座標,經由X軸及Y軸的旋轉及疊代最小平方誤差演算法(LMS),來補償麥克風陣列間各個麥克風的接收訊號延遲誤差,進而解決移動中的聲音訊號來源的追蹤問題。 而sinc函數延遲濾波器的校正值,是運用調適性訊號處理(ASP)中的疊代最小平方誤差演算法(LMS),來獲得麥克風陣列間各個麥克風的修正角度的最小誤差標準,再得到每次疊代的更新補償角度。此補償角度的獲得,是得自於相對應的麥克風陣列在三維的笛卡兒座標系中的旋轉追蹤角度。而此旋轉追蹤角度,所指的是,假設此麥克風陣列在笛卡兒座標系中動態的旋轉調整,用以追蹤快速運動的音源,使其訊號波以零相角差,到達此麥克風陣列的座標原點,所需的旋轉角度。相對於初始的麥克風陣列位置,此旋轉追蹤角度,既等於訊號到達角度(DOA)的估測值。也就是聲音訊號來源到達麥克風陣列的座標原點的二維相對方位。再藉由不同的麥克風陣列排列形狀來研究追蹤角度的精確度改善。This thesis investigates the use of microphone arrays to solve the tracing problem of the moving audio source with the rapid relative movement caused by the signal arrival time difference. The simulation results are presented to demonstrate the tracking angle accuracy with different array configurations. The sinc functions are utilized to construct the shifting, sampling, and delay filter. In the Cartesian coordinate system with the relative coordinates, through the X-axis and Y-axis rotation, the iterative least mean squares error algorithm (LMS) is employed to compensate for microphone array receiving signals with the various microphone delay errors such that it solves the tracing of the rapid moving audio source. The compensation of the sinc function filter is to use the adaptive signal processing of the iterative least mean squares error algorithm (LMS) to get the minimum compensation angle for each microphone array element, and then the scheme obtains the compensation point of each iteration in the update. The compensation for the acquisition of this point of view is derived from the corresponding three-dimensional Cartesian coordinate system to track the angle of the rotation in the microphone array. Regarding the rotation tracking angle, it is achieved by adjusting the Cartesian coordinate to make no phase difference. Relative to the initial position of the microphone array, this rotation tracking angle is equal to the estimated direction of signal arrival (DOA) estimation of the value. By various micro array configurations, the improvement on the accuracy is investigated.