中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/44612
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 50147962      Online Users : 707
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/44612


    Title: 粒子群演算法的改良與應用;Improvements and Applications of Particle Swarm Optimization
    Authors: 邱鴻志;Hung-Chih Chiu
    Contributors: 電機工程研究所
    Keywords: 粒子群演算法;模糊理論;Particle Swarm Optimization;Fuzzy
    Date: 2010-06-24
    Issue Date: 2010-12-09 13:50:29 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文之目的係為增加群體內粒子的搜尋能力和效率,而藉由模糊理論的觀念來調適粒子群演算法的加速度參數,這種策略主要是希望粒子群能持續的拓展搜尋範圍和找尋新的最佳解。本論文有兩種優點可以描述,一種就是可以和其它不同型式粒子群演算法的加速度參數做結合增加他們的搜尋性能,另一種就是經由模糊理論訂出三條模糊規則做加速度參數調整,達到全域搜尋能力。另外為了分析演算法於不同領域和適用性問題,透過16種標準函數的測試與5種不同的粒子群算法做比較。最後,經由模擬的結果顯示,本方法的確可以有效地改善原始PSO的性能,並且對於大多數的標準測試函數而言,均有優越的表現。In this thesis, in order to enhance each variable particle’s searching ability and efficiency, a fuzzy logic control is implemented to adapt the acceleration parameters of particle swarm optimization algorithm (PSO). The important condition of fully utilizing the particle swarm optimization algorithm is to keep advance between extensive searching and exploring global optimal. This method has two advantages. One is that it is flexible to integrate with other PSO techniques to enhance the searching performance further. The other is that it is only used three simple fuzzy inference rules to adaptively adjust the acceleration parameters of the standard PSO and results in certain improved searching ability and efficiency. In addition, the simulation is tested by using 16 benchmark functions. The results show that our proposed methods can efficiently improve the performance of original PSO and outperform the five compared PSO algorithms for most of benchmark functions.
    Appears in Collections:[Graduate Institute of Electrical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML612View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明