中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/44626
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41898975      線上人數 : 1209
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/44626


    題名: 光流特徵應用於走勢辨認;Human Gait Classification using Optical Flow Features
    作者: 鄭建宏;CHIEN-HUNG CHENG
    貢獻者: 資訊工程研究所
    關鍵詞: 走勢辨認;光流演算法;gait classification;optical flow
    日期: 2010-07-19
    上傳時間: 2010-12-09 13:50:54 (UTC+8)
    出版者: 國立中央大學
    摘要: 在圖形識別研究領域中,有許多身份認證的應用,諸如臉部辨識、掌紋辨識、虹膜 辨識以及簽名辨識等等,走勢辨識相對於其他辨識系統來說,是比較方便且人性化 的,它不需要額外的特殊儀器,所需要的設備僅需要一台攝影機,同時測試者也不 必停下來做指定的動作,只需要從架設好的環境經過,即可辨識出他的身份。在近 年來監視攝影機普遍的環境下,走勢辨識能夠更有效的去利用監控系統。本篇論文 提出以光流當作特徵資訊的系統架構,實做三種不同的光流演算法,並且透過多樣 化的測試,來分析與討論其優缺點。 我們所提出的系統流程分別如下,首先將輸入的走勢影像轉換成灰階色彩空 間,經過光流演算法的計算,取得光流資訊,先大略捨去掉強度較弱的雜訊,使用 高斯模型(GM)來逼近光流的分佈,推算出移動物的實際位置,以這個範圍為基準, 將光流資訊以強度和角度的表示,建立出二維直方統計圖,並且根據每個人走勢的 運動週期來做特徵資訊的正規劃,最後將特徵資訊經過主成份分析(PCA)和線性辨 別分析(LDA)後,以k-nn分類器來取得辨識結果。 我們利用CASIA走勢資料庫以及自己所錄製的資料庫來驗證我們系統的可行 性,其中包含測試系統對於衣著改變以及攝影機距離的影響,經由實驗結果證實, 即使每個人的走勢不見得會有顯著的差異,以走勢資訊當作特徵確實可以解決身份 認證的問題。此外,即便我們所提出的系統架構僅使用光流資訊作為特徵,其辨識 率也能夠和以輪廓為特徵的方法結果不相上下。最後,針對實驗結果我們加以分析 及討論,歸納並提出可能的改進方向。Gait classification is an effective and non-intrusive way for human identity identification on the research field of pattern recognition. The required device that we need is a camera, subjects just walk through the hallway naturally and the system can recognize their identity automatically. Recently, surveillance cameras are installed almost everywhere. Gait classification can be used effectively in detecting illegal intruders without installing extra equipments. In this thesis, we adopt optical flow information as the basic features of gait. Three kinds of optical flow algorithms are manipulated on our proposed system and a variety of testing, analyses and discussions are made to highlight the experiment results. We test and verify that the optical flow information is really working not only on moving object detection and tracking but also on the complex problem of gait classification. In our work, we first transform the input color image to gray level space. Then, employ optical flow algorithm to get the optical flow field. Some optical flow information on which intensity values are too small are removed and then Gaussian Model (GM) is employed to model the strong intensity information of optical flow. The locations of foreground objects (gait human) are extracted according to the mean and covariance of GM. After that, we adopt flows to construct feature histograms which belong to the bounding box. Since gait cycles are different with each subject, we apply the histogram matching method to normalize each video feature. Next, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are performed to reduce the feature dimension and find the best projection axis, respectively. Finally, k-Nearest Neighbor (k-NN) classifier is adopted to get the recognition result. Through experimental analysis, we find that gait is a very effective feature to classify human’s identity even though the differences of walking postures between different persons are hard to observe. Although the accuracy of optical flow information is doubtful, we proved that optical flow information is useful for gait classification problem. In this thesis, we adopt optical flow information only and do not consider shape features or other information. Moreover, experimental results demonstrate that the proposed framework contribute as good recognition rates as the contour-based approach in CASIA and our own database.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML723檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明