中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/44654
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41895186      Online Users : 1746
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/44654


    Title: 以蛋白質於真核細胞之位置預測蛋白質交互作用;Protein-protein interaction prediction enhancement using subcellular localization
    Authors: 陳佑慈;Yu-Tzu Chen
    Contributors: 資訊工程研究所
    Keywords: 交互作用;蛋白質;預測;位置;protein interaction;prediction;subcellular localization
    Date: 2010-07-24
    Issue Date: 2010-12-09 13:51:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 預測蛋白質之間的交互作用是一個重要而且研究相當完整的議題。大多數生物作用產生必須經歷蛋白質交互作用,異常的交互作用可能與某些神經系統症候群有關,因此,指出蛋白質之間是否有關連是必要的。 發生交互作用的蛋白質組,應該落在細胞中相同的位置。目前已存在的方法,大多建立於以蛋白質序列或是特定片段的信號來預測交互作用,很少將蛋白質的位置列入特性。而我們建立一個整合系統,能夠以蛋白質落在真核細胞中的位置為基礎,預測是否產生交互作用。我們取用蛋白質序列的組成、蛋白質的區塊、在細胞中的位置來建構這個系統。我們建立不同的模組來預測交互作用,依照輸入蛋白質組的位置選取其所屬位置的模組。我們的方法提高了蛋白質交互作用的預測效能,若有更完整的蛋白質交互作用以及位置資訊,將得到更高準度的預測。Protein–protein interactions are importance for almost every process in living cell. Abnormal interactions may have implications in a number of neurological syndromes. Therefore, it is crucial to recognize the association and dissociation of protein molecules. Current available computational methods of prediction of protein–protein interaction extract information from amino acid sequence or signal peptide. There are few method consider subcellular localization information. The method presented in this paper is based on the assumption that two proteins should appear on same subcellular localization to perform interaction. We develop an integrated system which based on a learning algorithm-support vector machine to predict protein–protein interactions. We construct training models for different subcellular localization. Each test protein pair request one training model to predict according to its localization. This method is take protein sequence composition, protein domains and subcellular localization information as features. The prediction ability of our method is better than other sequence-based protein–protein interaction prediction methods. In addition, a more complete data of protein-protein interactions and subcellular localizations can enhance the prediction ability of the method.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML598View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明