中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/44676
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41892327      Online Users : 2495
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/44676


    Title: 在移動式感測網路中利用移動方向的定位演算法;Localization Algorithm in Mobile Sensor Network with Moving Direction
    Authors: 邱達威;Dar-wei Chiou
    Contributors: 資訊工程研究所
    Keywords: 無線感測網路;定位演算法;移動式感測節點;wireless sensor networks;mobility;localization
    Date: 2010-07-26
    Issue Date: 2010-12-09 13:52:26 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在無線感測網路中,許多應用皆需要用到位置資訊以完成任務。近幾年已有許多針對移動式感測網路的定位演算法被提出,其中比較常見的定位方法為根據蒙地卡羅演算法而設計。這些基於蒙地卡羅方法的演算法需要產生樣本點以表示節點的位置,然而,產生並且維持這些樣本點的成本相當高。這篇論文中,我們提出一個非基於蒙地卡羅的定位方法,因此我們可以避免產生樣本點的花費。在我們提出的方法中,當一般節點(沒有位置資訊的節點)位於錨節點(已知位置資訊的節點)的通訊範圍內時,我們分析錨節點與一般節點的相對移動方向,並且利用這個資訊幫助一般節點定位。此外,我們也分析當一般節點鄰居只有單一錨節點的情形。模擬結果顯示我們的計算複雜度低於蒙地卡羅演算法,同時定位誤差也維持在可接受範圍。In wireless sensor network (WSN), location information is required to achieve the goal in many applications. Many localization algorithms are proposed to deal with the mobile sensor network in the past year. It is common that existing localization algorithms are based on the Sequential Monte Carlo (SMC) method. The SMC methods need to generate the samples to estimate the location of the sensor node. However, generating and filtering the samples is cost for each sensor node. In this paper, we propose a non-SMC distributed localization method. Thus, we can avoid spending computation cost on generating samples. In our proposed scheme, we analyze the relation between the moving direction of anchor node and normal node when the normal node (with unknown location) encounters the anchor node (with unknown location), and use the information to calculate the position of normal node. Besides, we also discuss the situation that normal node only has single neighboring anchor node in order to enhance the localization accuracy. The simulation shows that the computational complexity in our proposed method is lower than Monte Carlo Localization algorithm, and we also have acceptable localization error.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML827View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明