中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/44719
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41812383      Online Users : 978
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/44719


    Title: 利用隱式型態模式之自適應車行監控畫面分析系統;Adaptive Traffic Scene Analysis by using Implicit Shape Model
    Authors: 許凱凱;Kai-kai Hsu
    Contributors: 資訊工程研究所
    Keywords: 交通監控;車輛;交疊;vehicle;traffic;surveillance;occlusion;SIFT
    Date: 2010-07-27
    Issue Date: 2010-12-09 13:53:37 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究提出一個針對固定式道路監視畫面之分析工具,用以協助解決車輛影像交疊問題,並提升車流評估及車輛分類準確度。本論文主要分為兩個部份,第一部份為模型訓練機制,經由搜集之交通場景及車輛相關資訊,分析其統計特性,取得目標道路車流方向及出現之機車、汽車、公車等各類車輛大小資訊,接著以自動化的方式建立交通場景模型及代表車輛之隱式型態模式 (ISM)。值得注意的是,此自適應機制可以大幅減少模型建置的人力需求。第二部份結合了訓練完成的ISM,對可能發生車輛影像交疊的部份進行辨識。實驗結果顯示了這個機制確實能夠適應不同的交通場景,並且有效地解決道路監視器畫面中車輛影像交疊的問題。This research presents a framework of analyzing the traffic information in the surveillance videos from the static roadside cameras to assist resolving the vehicle occlusion problem for more accurate traffic flow estimation and vehicle classification. The proposed scheme consists of two main parts. The first part is a model training mechanism, in which the traffic and vehicle information will be collected and their statistics are employed to automatically establish the model of the scene and the implicit shape model of vehicles. It should be noted that the proposed self-training mechanism can reduce a great deal of human efforts. The second part adopts the established implicit shape model, which is a highly flexible learned representation, for vehicle recognition when possible occlusions of vehicles are detected. Experimental results demonstrate that the proposed scheme can deal with the scenes with different characteristics and the occlusion problem in traffic surveillance videos can be reasonably resolved.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML551View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明