微型化的積體雷射元件有著非常多的應用,例如藍光雷射光源對於生 物醫療、雷射列印、光學儲存與讀取以及量測系統等有許多應用;綠光雷 射光源在資料印刷,雷射顯示器,精密加工,高解析度印刷器等等領域也有諸 多應用。 本研究選用5mol.%鎂摻雜鈮酸鋰,利用該材料本身的高非線性係數及 高抗光折變損害等優良特性製作波長轉換元件。我們在鎂掺雜鈮酸鋰中做 上軟質子交換波導並利用準相匹配技術做二倍頻,在實驗上以1550nm、 1064nm、808nm 三種波段當基頻光,並做上三種不同的準相位匹配二倍頻週 期在不同鎂掺雜鈮酸鋰軟質子交換波導中,各產生波段為775nm 的紅光、 532nm 之綠光、404nm 之藍光。 在理論模擬上,我們成功利用擴散離子交換式(ion exchange equation) 建立起軟質子交換波導的擴散模型,其擴散分布曲線與實際的量測結果有 一非常相似的分布。 在實驗的量測上,我們成功做出軟質子交換波導,並利用XRD 繞射儀 確定為單一晶相,並利用Fabry-perot 的方法量得其傳播損耗約為 1.4dB/cm。在藍光二倍頻,量得其藍光輸出約為0.2mw,其轉換效率大約 48%/W;在紅光二倍頻,量到的紅光輸出約為320nw,其轉換效率約為 0.2%/W;在綠光二倍頻,並無法找到相位匹配的溫度。 綠光二倍頻相位匹配頻寬經理論計算後,只有不到一度的範圍是找不 到相位匹配的主因。而紅光二倍頻轉換效率低落,則是因為基頻光與倍頻 光模態疊加積分過小之故。 Integrated miniaturized laser components has a lot of applications,such as blue laser light source for bio-medical、laser printing、optical storage and retrieval and measurement systems have many applications; green laser light source in the data Printing、laser displays、precision machining、high-resolution printing devices also has many applications。 we try to develop a fabrication method of a quasi-phase-matching (QPM) second-harmonic generator in a low-loss soft proton exchange optical-waveguide for achieving a high-efficiency laser based on a 5 mol. % MgO:LiNbO3 characterized by high optical nonlinearity and high optical damage resistance。In the experiment,light source with three different wavelength in 1550nm、1064、808nm incident three different MgO:LN SPE waveguide to generate second harmonic generation in 775nm、532nm、404nm three different light。 In the theoretical simulation,we have successfully used diffusion-type ion exchange (ion exchange equation) to establish the soft proton exchange waveguide diffusion model,the diffusion distribution curve and the actual measured results have a very similar distribution。 III In the experimental measurements,we have successfully made the soft proton exchange waveguide,using XRD diffraction identified as a single phase,and the methods used Fabry-perot to measure propagation loss is about 1.4dB/cm。In the Blue light measurement,the maximum blue light output is about 0.2mw and the conversion efficiency is about 48% / W; second harmonic in the red light, the red light measurement,the maximum red light output is about 320nw and the conversion efficiency is about 48% / W; in the green light measurement,the phase matching temperature can not be found。 SHG temperature phase-matching bandwidth in green light is too small to be found in the experiment by the theoretical calculation。The reason of the low conversion efficiency in red light generation due to the bad mode overlapping integral between the fundamental frequency and second harmonic frequency。