English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%) Visitors : 23139012      Online Users : 528
 RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
 Scope All of NCUIR 理學院    統計研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 Home ‧ Login ‧ Upload ‧ Help ‧ About ‧ Administer
 NCU Institutional Repository > 理學院 > 統計研究所 > 博碩士論文 >  Item 987654321/48254

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/48254`

 Title: 關聯結構模型之強韌性的探討;Exporing the robustness of copula models Authors: 蔡宛玲;Wan-Ling Cai Contributors: 統計研究所 Keywords: 多元負二項模型;Copula模型;強韌概似函數;multivariate negative binomial model;copula model;robust likelihood function Date: 2011-07-14 Issue Date: 2012-01-05 14:42:40 (UTC+8) Abstract: 近年來，Copula 成為建構多元模型相當流行的方法，且被廣泛地應用在各個領域。雖然 Copula 方法可輕易的建構多元模型，但若假設的模型與真實的分配不合時，則根據此 Copula 模型得到的統計推論是否正確，則尚未有研究探討。 本文主要的目的是，針對二元非負資料，探討 Copula 模型，在模型假設不正確下，此實作模型的推論結果是否有強韌性，並與多元負二項模型之結果作一對比。 In recent years, copula models have become a popular method for modeling correlated data, and have been widely applied in many field of studies. Although one can use the copula models to construct multivariate distribution easily, there is no research discussing the robustness of copula models so far. The purpose of this thesis is to investigate the robustness property of the copula models under model misspecifications. We also compare copula models with the multivariate negative binomial model. Appears in Collections: [統計研究所] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML573View/Open

All items in NCUIR are protected by copyright, with all rights reserved.

 社群 sharing

::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期：8-24-2009 :::
 DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明