具相關性的連續與個數資料,如一個人的身高、體重與血壓值,常見於醫學與其他研究領域中。這種相關性的資料在分析上較困難,原因在不易找到適合的統計模型。 本文中透過不同實作模型的比較,來說明強韌多維負二項模型是個可適用於任何資料類型的統計模型。 Multivariate correlated data with various types are encountered in many research areas. Such data are generally more difficult to analyze due to the scarcity of appropriate statistic models. We demonstrate that the multivariate negative binomial model can be easily modified to provide asymptotically legitimate inferences about the regression parameters for correlated data of mixing types. Contrast is also made with models proposed in the literatures.