本論文我們將研究一維有黏性、等熵且可壓縮的流體通過各式各樣的不連續管子的非黏性穩定狀態,透過使用geometric singular perturbation 的技巧來建立駐波(stationary wave)的存在性。我們研究包括supersonic、subsonic、transonic 的駐波都是不連續的,並且將每種情況中的非黏性駐波分類討論。特別是,我們將探討光滑的管子和不連續的管子中的駐波的差別。 In this work we study inviscid steady-states of one-dimensional viscous isentropic compressible flows through various discontinuous nozzles. We establish the existence of stationary waves by using geometric singular pertur-bation technique. We conclude that all stationary waves including supersonic, subsonic and transonic, are discontinuous. Also, we classify all inviscid stationary waves in every situation.In particular, we discuss the difference of inviscid stationary waves between smooth nozzle and discontinuous nozzle.